• Title/Summary/Keyword: critical parameters

Search Result 1,941, Processing Time 0.026 seconds

Determination of Critical State Parameters in Sandy Soils from Standard Triaxial Testing (I) : Review and Application (표준삼축시험으로부터 사질토에서의 한계상태정수 결정에 관한 연구 (I) : 고찰 및 적용)

  • 조계춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.61-75
    • /
    • 2003
  • Comprehensive review on the determination of critical state parameters in sandy soils from standard triaxial testing was performed to facilitate the application of critical state soil mechanics to the shear behavior of sandy soils. First, semantic differences in literature were clarified, inferring that critical state should be considered as the ultimate state at large deformation. Second, the characteristics of critical state parameters were discussed, and also the uniqueness of critical state line and the sensitivity of quasi-steady state condition were verified in relation to initial state, fabric, loading condition, and drainage condition. Third, as an example, the critical state soil mechanics was applied to evaluate the post-liquefaction shear strength, i.e. the reliable ultimate shear strength in liquified soils, in terms of critical state parameters.

ESTIMATION ALGORITHM FOR PHYSICAL PARAMETERS IN A SHALLOW ARCH

  • Gutman, Semion;Ha, Junhong;Shon, Sudeok
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.723-740
    • /
    • 2021
  • Design and maintenance of large span roof structures require an analysis of their static and dynamic behavior depending on the physical parameters defining the structures. Therefore, it is highly desirable to estimate the parameters from observations of the system. In this paper we study the parameter estimation problem for damped shallow arches. We discuss both symmetric and non-symmetric shapes and loads, and provide theoretical and numerical studies of the model behavior. Our study of the behavior of such structures shows that it is greatly affected by the existence of critical parameters. A small change in such parameters causes a significant change in the model behavior. The presence of the critical parameters makes it challenging to obtain good estimation. We overcome this difficulty by presenting the Parameter Estimation Algorithm that identifies the unknown parameters sequentially. It is shown numerically that the algorithm achieves a successful parameter estimation for models defined by arbitrary parameters, including the critical ones.

Real-time malfunction detection of plasma etching process using EPD signal traces (EPD 신호궤적을 이용한 플라즈마 식각공정의 실시간 이상검출)

  • Cha, Sang-Yeob;Yi, Seok-Ju;Koh, Taek-Beom;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.246-255
    • /
    • 1998
  • This paper presents a novel method for real-time malfunction detection of plasma etching process using EPD signal traces. First, many reference EPD signal traces are collected using monochromator and data acquisition system in normal etching processes. Critical points are defined by applying differentiation and zero-crossing method to the collected reference signal traces. Critical parameters such as intensity, slope, time, peak, overshoot, etc., determined by critical points, and frame attributes transformed signal-to symbol of reference signal traces are saved. Also, UCL(Upper Control Limit) and LCL(Lower Control Limit) are obtained by mean and standard deviation of critical parameters. Then, test EPD signal traces are collected in the actual processes, and frame attributes and critical parameters are obtained using the above mentioned method. Process malfunctions are detected in real-time by applying SPC(Statistical Process Control) method to critical parameters. the Real-time malfunction detection method presented in this paper was applied to actual processes and the results indicated that it was proved to be able to supplement disadvantages of existing quality control check inspecting or testing random-selected devices and detect process malfunctions correctly in real-time.

  • PDF

Estimation of characteristic parameters of refrigerants by group contribution method (집단 기여법에 의한 냉매의 특성인자 예측)

  • Kim, Y.I.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.125-132
    • /
    • 1999
  • Studies are being done to replace conventional refrigerants with alternatives that have low or no ozone depletion and greenhouse warming Potentials, yet possess appropriate pro perties for a refrigeration cycle. To achieve this goal, a consistent set of thermodynamic properties of the working fluid is required. A common problem with the possible alternative refrigerants is that sufficient experimental data do not exist, thus making it difficult to develp complete equations of state that can predict properties in all regions including the vapor-liquid equilibrium. One solution is the use of the generalized equation of state correlations that can predict thermodynamic properties with a minimum number of characteristic parameters. Characteristic parameters required for the generalized equation of state are, in general, critical temperature, critical pressure, critical volume and normal boiling temperature. In this study, estimation of these characteristic parameters of refrigerants by group contribution method is developed.

  • PDF

Long-term Intra-individual Variations and Critical Differences of Clinical Chemical Parameters in Dogs (개 혈청화학검사항목의 장기간의 개체 내 변이와 Critical Difference)

  • Choi Eun-wha;Shin Il-seob;Bhang Dong-ha;Kim You-seok;Hwang Cheol-yong;Youn Hwa-young;Lee Chang-woo
    • Journal of Veterinary Clinics
    • /
    • v.22 no.3
    • /
    • pp.198-201
    • /
    • 2005
  • The purpose of this study was to assess intra-individual variations of clinicochemical parameters and calculate critical differences in healthy dogs during long-term periods. To calculate the critical difference of clinicochemical parameters, blood samples from 20 apparently clinically healthy dogs were collected once weekly for eight consecutive weeks. The critical difference was calculated as 9.01 mg/dl for urea, 0.52 mg/dl for creatinine, 0.99 g/dl for total protein, 0.39 g/dl for albumin, and 20.64 mg/dl for glucose. If two consecutive results differ by less than the critical difference value, it can be concluded that the difference is probably due to physiological variation. However, when the difference is greater than the critical value, other factors, either related to progression of the disease or the presence of concurrent disease, are more likely to be involved.

Determination of Critical State Parameters in Sandy Soils from Standard Triaxial Testing (II) : Experiment and Recommendation (표준삼축시험으로부터 사질토에서의 한계상태정수 결정에 관한 연구 (II) : 실험 및 추천)

  • 조계춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.77-92
    • /
    • 2003
  • A set of standard triaxial testing was performed to identify underlying physical processes and inherent limitations in the determination of critical state parameters in sandy soils. The experimental test results showed that the critical state friction angle for a given soil is constant regardless of drainage condition while the critical state line on the e-log p'space is significantly affected by drainage condition mainly because of insufficient strain attained in standard triaxial tests and strain localization effects in udrained tests. It appeared that the best method to determine critical state parameters in laboratory testing is to use homogeneous loose specimens under drained shear condition. In addition, a reference state parameter was suggested to design tests that will avoid dilatancy or strain localization effects in drained tests.

Concurrent Modeling of Magnetic Field Parameters, Crystalline Structures, and Ferromagnetic Dynamic Critical Behavior Relationships: Mean-Field and Artificial Neural Network Projections

  • Laosiritaworn, Yongyut;Laosiritaworn, Wimalin
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.315-322
    • /
    • 2014
  • In this work, Artificial Neural Network (ANN) was used to model the dynamic behavior of ferromagnetic hysteresis derived from performing the mean-field analysis on the Ising model. The effect of field parameters and system structure (via coordination number) on dynamic critical points was elucidated. The Ising magnetization equation was drawn from mean-field picture where the steady hysteresis loops were extracted, and series of the dynamic critical points for constructing dynamic phase-diagram were depicted. From the dynamic critical points, the field parameters and the coordination number were treated as inputs whereas the dynamic critical temperature was considered as the output of the ANN. The input-output datasets were divided into training, validating and testing datasets. The number of neurons in hidden layer was varied in structuring ANN network with highest accuracy. The network was then used to predict dynamic critical points of the untrained input. The predicted and the targeted outputs were found to match well over an extensive range even for systems with different structures and field parameters. This therefore confirms the ANN capabilities and indicates the ANN ability in modeling the ferromagnetic dynamic hysteresis behavior for establishing the dynamic-phase-diagram.

Weld Quality Monitoring System Development Applying A design Optimization Approach Collaborating QFD and Risk Management Methods (품질 기능 전개법과 위험 부담 관리법을 조합한 설계 최적화 기법의 용접 품질 감시 시스템 개발 응용)

  • Son, Joong-Soo;Park, Young-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.207-216
    • /
    • 2000
  • This paper introduces an effective system design method to develop a customer oriented product using a design optimization process and to select a set of critical design paramenters,. The process results in the development of a successful product satisfying customer needs and reducing development risk. The proposed scheme adopted a five step QFD(Quality Function Deployment) in order to extract design parameters from customer needs and evaluated their priority using risk factors for extracted design parameters. In this process we determine critical design parameters and allocate them to subsystem designers. Subsequently design engineers develop and test the product based on these parameters. These design parameters capture the characteristics of customer needs in terms of performance cost and schedule in the process of QFD, The subsequent risk management task ensures the minimum risk approach in the presence of design parameter uncertainty. An application of this approach was demonstrated in the development of weld quality monitoring system. Dominant design parameters affect linearity characteristics of weld defect feature vectors. Therefore it simplifies the algorithm for adopting pattern classification of feature vectors and improves the accuracy of recognition rate of weld defect and the real time response of the defect detection in the performance. Additionally the development cost decreases by using DSP board for low speed because of reducing CPU's load adopting algorithm in classifying weld defects. It also reduces the cost by using the single sensor to measure weld defects. Furthermore the synergy effect derived from the critical design parameters improves the detection rate of weld defects by 15% when compared with the implementation using the non-critical design parameters. It also result in 30% saving in development cost./ The overall results are close to 95% customer level showing the effectiveness of the proposed development approach.

  • PDF

Predictions of the Marviken Subcooled Critical Mass Fuel Using the Critical Flow Scaling Parameters

  • Park, Choon-Kyung;Chun, Se-Young;Seok-Cho;Yang, Sun-Ku;Chung, Moon-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.522-527
    • /
    • 1997
  • A total of 386 critical flow data points from 19 runs of 27 runs in the Marviken Test were selected and compared with the predictions by the correlations based on the critical flow scaling parameters. The results show that the critical mass flux in the very large diameter pipe can be also characterized by two scaling parameters such as discharge coefficient and dimensionless subcooling( $C_{d, ref}$ and $\Delta$ $T^{*}$$_{sub}$). The agreement between the measured data and the predictions are excellent.t.ons are excellent.t.

  • PDF

Curvilinear free-edge form effect on stability of perforated laminated composite plates

  • Zerin, Zihni;Basoglu, Muhammed Fatih;Turan, Ferruh
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.255-266
    • /
    • 2017
  • In this study, self-supporting roofing elements especially convenient for large-span structures such as stadium, airport terminal, mall, coliseum, etc. were examined with respect to critical buckling load. These elements were assumed as laminated composite plates and, variation of free-edge forms, cutout types and lamination configurations were used as design parameters. Based on the architectural feature and structural requirements, the effects of curvilinear free-edge form on critical buckling load were focused on in this research. Within this scope, 14 types of lamination configuration were specified according to various orientation angle, number and thickness of plies with a constant value of total plate thickness. Besides that, 6 different types of cutout and 3 different free-edge forms were determined. By combining all these parameters 294 different critical buckling load analyses were performed by using ANSYS Mechanical software based on finite element method. Effects of those parameters on critical buckling load were evaluated referring to the obtained results. According to the results presented here, it may be concluded that lamination conditions have more significant influence on the critical buckling load values than the other parameters. On the other hand, it is perceived that curvilinear free-edge forms explicitly undergo changings depending on lamination conditions. For future work, existence of delamination might be considered and progression of the defect could be investigated by using non-linear analysis.