• Title/Summary/Keyword: critical nitrogen concentration

Search Result 62, Processing Time 0.031 seconds

Studies on the Grassland Development in the Forest Ⅷ. Effect of shading degrees on the quality, digestibility and nitrate nitrogen concentration of main grasses (林間草地 開發에 關한 硏究 Ⅷ. 遮光程度가 主要 牧草의 品質, 消化率 및 窒酸態窒素含量에 미치는 影響)

  • Park, Moon-Soo;Seo, Sung;Han, Young-Choon;Lee, Joung-Kyong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.8 no.2
    • /
    • pp.85-91
    • /
    • 1988
  • A field experiment was conduted to determine the effects of shading degrees (O: full sunlight, 25, 50 and 75%) on the proximate components, cell wall constituents (CWC), digestibility, water soluble carbohydrates (WSC) and nitrate nitrogen ($NO_3$-N) concentration of grasses grown in forest. For the test different artificial shading houses were established and pasutre species used were orchardgrass, timothy, perennial ryegrass and ladino clover. the experiment was performed at LES in Suwon, 1985 1. Considering proximate components, CWC and digestibility of grasses, ladino clover showed the best quality, and then perennial ryegrass. 2. The contents of crude protein, crude ash, and digestibility of grasses were increased with shadking, regardless of pasture species. As the shading degrees are increased, the contents of crude fibe in orchardgrass, perennial ryegrass and timothy were decreased, while that in ladino clover was increased with shading. 3. Grasses grwon in spring showed higher digestibility than those grwon in summer season. 4. The content of WSC was the highest in perennial ryegrass, and then ladino clover, orchardgrass, and timothy, in that order. Also WSC was decreased as the shading degrees are in creased. 5. The content of $NO_3$-N was the highest in perennial ryegrass, and then orchardgrass, ladino clover and timothy, in that order. Also the $NO_3$-N was significantly increased with higher shading level. In the regression equation between shading degrees and $NO_3$-N ($r^2=0.90^{**},\;r^2=0.95^{**}$), shading degree of 43 to 44% was critical level, causing nitrate poisoning to animal. 6. Considering grass quality, dry matter yield and $NO_3$-N, less than 40% of shading degree (over 60% of full sunlight) was desirable for better grassland improvement, management and utilization in the forest.

  • PDF

Studies on the Grassland Development in the Forest VIII. Effect of shading degrees on the quality, digestibility and nitrate nitrogen concentration of main grasses (임간초지 개발에 관한 연구 VIII. 차광정도가 주요목초의 품질, 소화율 및 질산태질소 함량에 미치는 영향)

  • Park, Moon-Soo;Seo, Sung;Han, Young-Choon;Lee, Joung-Kyong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.8 no.3
    • /
    • pp.85-91
    • /
    • 1988
  • A field experiment was conducted to determine the effects of shading degrees (0: full sunlight, 25, 50 and 75%) on the proximate components, cell wall constituents (CWC), digestibility, water soluble carbohydrates (WSC) and nitrate nitrogen ($NO_3$-N) concentration of grasses grown in forest. For the test different artificial shading houses were established and pasture species used were orchardgrass, timothy, perennial ryegrass and ladino clover. The experiment was performed at LES in Suwon. 1985. 1. Considering proximate components, CWC and digestibility of grasses, ladino clover showed the best quality, and then perennial ryegrass. 2. The contents of crude protein, crude ash, and digestibility of grasses were increased with shading, regardless of pasture species. As the shading degrees are increased, the contents of crude fiber in orchardgrass, perennial ryegrass and timothy were decreased, while that in ladino clover was increased with shading. 3. Grasses grown in spring showed higher digestibility than those grown in summer season. 4. The content of WSC was the highest in perennial ryegrass, and then ladino clover, orchardgrass, and timothy, in that order. Also WSC was decreased as the shading degrees are increased. 5.The content of $NO_3$-N was the highest in perennial ryegrass, and then orchardgrass, ladino clover and timothy, in that order. Also the $NO_3$-N was significantly increased with higher shading level. In the regression equation between shading degrees and $NO_3$-N ($r^2$=0.90**, TEX>$r^2$=0.95**), shading degree of 43 to 44% was critical level, causing nitrate poisoning to animal. 6 Considering grass quality, dry matter yield and $NO_3$-N, less than 40% of shading degree (over 60% of full sunlight) was desirable for better grassland improvement, management and utilization in the forest.

  • PDF

Influence of Varied Pre-planting N Levels in a Medium on the Growth of Chinese Cabbage and Pak-choi Seedlings in Paper Pot Raising (종이포트 육묘시 기비로 혼합된 질소 시비수준이 배추와 청경채 생장에 미치는 영향)

  • Kim, Hyun Cheul;Park, Myong Sun;Jang, Yoonah;An, Sewoong;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.342-351
    • /
    • 2019
  • The optimum N concentrations incorporated as pre-planting nutrient charge fertilizer were determined for seedling raising using cylindrical paper pots. A root medium was formulated by blending of peat moss (particles smaller than 2.84 mm were 80-90%) and perlite (1 to 3 mm) with the ratio of 7:3 (v/v). The treatment N concentrations incorporated during the root medium formulation were adjusted to 0, 150, 250, 500, and $750mg{\cdot}L^{-1}$ and the concentrations of essential nutrients except N were equal in all treatments. After making of paper pots and putting into the 40-cell tray, the seeds of Chinese cabbage ('Chunmyeong Bom Baechu') and pak-choi ('Hanog cheonggyeongchae') were sown. During the raising of seedlings, weekly analysis of medium pH, EC and concentrations of inorganic elements were conducted. After 21 and 20 days after seed sowing of Chinese cabbage and pak-choi, the growth of the above-ground parts were measured and contents of inorganic elements in the plant tissues were analyzed. During the growing period, pH of the root media rose gradually and the EC decreased rapidly at week 3. The pH of root media at harvest was in the range of 5.3 to 5.9 in Chinese cabbage and 4.93 to 5.39 in pak-choi. Growth of the aboveground parts in terms of fresh and dry weight in both the plants were the highest in the $250mg{\cdot}L^{-1}$ N treatment and the lowest in the control treatment. The elevation of pre-planting N concentrations in root medium resulted in the increase of tissue N content and decrease of P, Ca, and Mg contents. The regression equation derived from the influence of varied pre-planting N concentrations on dry weight of above-ground tissue were $y=-0.0036x^2+0.0021x+0.0635$ ($R^2=0.9826$) in Chinese cabbage and $y=-0.16x^2+0.0009x+0.032$ ($R^2=0.991$) in pak-choi. When the low critical concentration of pre-plant N is taken at the point where dry weight of above-ground tissue is 10% less than maximum (0.40 g in Chinese cabbage and 0.16 g in pak-choi), those point are 0.36 g and 0.144 g per plant in Chinese cabbage and pak-choi, respectively. The lower critical N concentrations of root media calculated from the regression equations are $196mg{\cdot}L^{-1}$ for Chinese cabbage and $187mg{\cdot}L^{-1}$ for pak-choi. These results indicate that optimum pre-plant N concentrations for seedling raising using paper pots are in the range of 196 to $250mg{\cdot}L^{-1}$ for Chinese cabbage and 187 to $250mg{\cdot}L^{-1}$ for pak-choi.

A Study on Release Characteristics of Lake Sediments under Oxic and Anoxic Conditions (호수 퇴적물의 호기 및 혐기조건에서의 용출 특성에 대한 연구)

  • Yoon, Mi-Hae;Hyun, Jun-Taek;Huh, Nam-Soo;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1003-1012
    • /
    • 2007
  • In this study, we analyzed the release differences for some critical pollution compounds according to the surrounding conditions in order to predict water quality due to the sedimental releases and the release characteristics at different sedimental locations in Lake Leewon, in Tae-An area. COD, nitrogens and phosphates were analyzed using the standard methods for water quality, based on high chloride ion concentration(greater than 2,000 ppm). For COD, the release rate increased in the anoxic basin but almost the same in the oxic basin. For $NH_3$-N, the release rate decreased in the oxic basin as you go A through C point meanwhile, for $NO_3$-N and T-N, the tendency was reversed because of nitrification of them. In the anoxic basin, the release rates of $NH_3$-N and $NO_3$-N went up with A through C path. However, the release rate of T-N was found to decrease. Also, for $PO_4$-P and T-P, the release rates in the oxic basin were lowest at B point mainly because the phosphates were at less released in the highly $O_2$ concentrated environment. In the anoxic reactor, $PO_4$-P was released similarly regardless of the sampling points. In summary, the release rates in the oxic reactor were greater than those in the anoxic reactor for COD and $NO_3$-N. For the other components, the anoxic basin generated the higher release rates.

Flame Instability in Heptane Pool Fires Near Extinction (소화근처 헵탄 풀화재의 화염불안정성)

  • Jeong, Tae Hee;Lee, Eui Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1193-1199
    • /
    • 2012
  • A cup burner experiment was performed to investigate the effect of the oxidizer velocity and concentration on flame instability near extinction. Heptane was used as a fuel and air diluted by nitrogen and carbon dioxide was used in the oxidizer stream. Two types of flame instabilities at the flame base and at axial downstream were observed near extinction. The instability at the flame base could be characterized by cell, swing, and rotation modes, and the cell mode changed to the rotation mode through the swing mode as the oxidizer velocity increased. To assess the parameters for the flame instability, the initial mixture strengths, Lewis number, and adiabatic flame temperature were investigated under each condition. The Lewis number might be the most important among them, but it is impossible to generalize because of the insufficient number of cases. Furthermore, the axial periodic flickering motion disappeared at low and high oxidizer velocities near extinction. This resulted from the fact that low oxidizer velocity induced evaporated fuel velocity below the critical velocity and high velocity made the reacting fuel velocity comparable.

The Limnological Survey and Phosphorus Loading of Lake Hoengsung (횡성호의 육수학적 조사와 인부하)

  • Kwon, Sang-Yong;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.411-422
    • /
    • 2004
  • A limnological survey was conducted in a reservoir, Lake Hoengsung located in Kangwondo, Korea, from July 2000 to September 2001 on the monthly basis. Phosphorus loading from the watershed was estimated by measuring total phosphorus concentration in the main tributary. Secchi disc transparency, epilimnetic (0-5 m) turbidity, chlorophyll a (Chl-a), total phosphorus (TP), total nitrogen(TN) and silica concentration were in the range of 0.9-3.5 m, 0.1-8.5 NTU, 0.3-32.4 mgChl $m^{-3}$, 5-46 mgP $m^{-3}$, 0.83-3.55 mgN $L^{-1}$ and 0.5-9.6 mgSi $L^{-1}$, respectively. Green algae and cyanobacteria dominated phytoplankton community in warm seasons, from July through October, 2000. In July a green alga (Scenedesmus sp.) was dominant with a maximum cell density of 10,480 cells mL. Cyanobacteria (Microcystics sp.) dominated in August and September with cell density of 3,492 and 295 cells mL ,respectively. Species diversity of phytoplankton was highest (2.22) in July. The trophic state of the reservoir can be classified as eutrophic on the basis of TP, Chl-a, and Secchi disc transparency. Because TP concentration was high in flood period, most of phosphorus loading was concentrated in rainy season. TP loading was calculated by multiplying TP and flow rate. The dam managing company measured inflow rate of the reservoir daily, while TP was measured by weekly surveys. TP of unmeasured days was estimated from the empirical relationship of TP and the flow rate of the main tributary; $TP=5.59Q^{0.45}\;(R^2=0.47)$. Annual TP loading was calculated to be 4.45 tP $yr^{-1}$, and the areal P loading was 0.77 gP $m^{-2}\;yr^{-1}$ which is similar to the critical P loading for eutrophication by Vollenweider's phosphorus model, 0.72 gP $m^{-2}\;yr^{-1}$.

Diagnosis of the Field-Grown Rice Plant -[1] Diagnostic Criteria by Flag Leaf Analysis- (포장재배(圃場栽培) 수도(水稻)의 영양진단(營養診斷) -1. 지엽분석(止葉分析)에 의(依)한 진단(診斷)-)

  • Park, Hoon
    • Applied Biological Chemistry
    • /
    • v.16 no.1
    • /
    • pp.18-30
    • /
    • 1973
  • The flag and lower leaves (4th or 5th) of rice plant from the field of NPK simple trial and from three low productive area were analyzed in order to find out certain diagnostic criteria of nutritional status at harvest. 1. Nutrient contents in the leaves from no fertilizer, minus nutrient and fertilizer plots revealed each criterion for induced deficiency (severe deficient case induced by other nutrients), deficiency (below the critical concentration), insufficiency (hidden hunger region), sufficiency (luxuary consumption stage) and excess (harmful or toxic level). 2. Nitrogen contents for the above five status was less than 1.0%, 1.0 to 1.2, 1.2 to 1.6, 1.6 to 1.9 and greater than 1.9, respectively. 3. It was less than 0.3%, 0.3 to 0.4, 0.4 to 0.55 and greater than 0.55 for phosphorus $(P_2O_5)$ but excess level was not clear. 4. It was below 0.5%, 0.5 to 0.9, 0.9 to 1.2, 1.2 to 1.4 and above 1.4 for potassium. 5. It was below 4%, 4 to 6, 6 to 11 and above 11 for silicate $(SiO_2)$ and no excess was appeared. 6. Potassium in flag leaf seemed to crow out nitrogen to ear resulting better growth of ear by the inhibition of overgrowth of flag leaf. 7. Phosphorus accelerated the transport of Mg, Si, Mn and K in this order from lower leaf to flag, and retarded that of Ca and N in this order at flowering while potassium accelerated in the order of Mn, and Ca, and retarded in the order of Mg, Si, P and N at milky stage. 8. Transport acceleration index (TAI) expressed as (F_2L_1-F_1L_2)\;100/F_1L_1$ where F and L stand for other nutrient cotents in flag and lower leaf and subscripts indicate the rate of a nutrient applied, appears to be suitable for the effect of the nutrient on the translocation of others. 9. The content of silicate $(SiO_2)$ in the flag was lower than that of lower leaf in the early season cultivation indicating hinderance in translocation or absorption. It was reverse in the normal season cultivation. 10. The infection rate of Helminthosporium frequently occurred in the potassium deficient field seemed to be related more to silicate and nitrogen content than potassium in the flag leaf. 11. Deficiency of a nutrient occured simultaniously with deficiency of a few other ones. 12. Nutritional disorder under the field condition seems mainly to be attributed to macronutrients and the role of micronutrient appears to be none or secondary.

  • PDF

Nitrite Accumulation Characteristics According to Hydraulic Retention Time and Aeration Rate in a Biological Aerated Filter (생물여과 반응기에서 수리학적 체류시간 및 폭기량에 따른 아질산 축적 특성)

  • Yoon, Jong Moon;Kim, Dong Jin;Yoo, Ik-Keun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.200-206
    • /
    • 2006
  • In a biological aerated filter (BAF) packed with ceramic media (void fraction of BAF=0.32), nitrite accumulation was studied with the variation of hydraulic retention time (HRT) and superficial air velocity. Synthetic ammonium wastewater and petrochemical wastewater were fed at a constant load of $1.6kgNH_4^+-N/m^3{\cdot}d$. Ammonium removal rate was mainly affected by the superficial air velocity in BAF, but nitrite ratio($NO_2-N/NO_x-N$) in the effluent was dependent on both HRT and superficial air velocity. For a fixed HRT of 0.23 hr (corresponding to the empty bed contact time of 0.7 hr) ammonium removal rate was 73/90/92% and nitrite ratio was 0.92/0.82/0.48 at the superficial air velocity of 0.23/0.45/0.56 cm/s, respectively. When HRT is increased to 0.9 hr with superficial air velocity ranging from 0.34 to 0.45 cm/s, the ammonium removal rate was 89% on average. However nitrite ratio decreased significantly down to 0.13. When HRT was further increased to 1.4 hr, ammonium removal rate decreased, thereby resulting in the free ammonia ($NH_3-N$, FA) build-up and nitrite ratio gradually increased (>0.95). Although aeration rate and FA concentration at HRT of 0.23 hr were unfavorable for nitrite accumulation compared with those at HRT of 0.9 hr, nitrite ratio at HRT of 0.23 hr was higher. Taken together, HRT and nitrogen load were found to be critical, in addition to FA concentration and aeration condition, for nitrite accumulation in the BAF tested in the present study.

Abundance of Harmful Algae, Cochlodinium polykrikoides, Gyrodinium impudicum and Gymnodinium catenatum in the Coastal Area of South Sea of Korea and Their Effects of Temperature, Salinity, Irradiance and Nutrient on the Growth in Culture (남해안 연안에서 적조생물, Cochlodinium polykikoides, Gyrodinium impudicum, Gymnodinium catenatum의 출현상황과 온도, 염분, 조도 및 영양염류에 따른 성장특성)

  • LEE Chang Kyu;KIM Hyung Chul;LEE Sam-Geun;JUNG Chang Su;KIM Hak Gyoon;LIM Wol Ae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.536-544
    • /
    • 2001
  • Three harmful algal bloom species with similar morphology, Cochlodinium polykrikoides, Gyodinium impudicum and Gymodinium catenatum have damaged to aquatic animals or human health by either making massive blooms or intoxication of shellfishes in a food chain. Eco-physiological and hydrodynamic studies on the harmful algae offer useful informations in the understanding their bloom mechanism by giving promising data for the prediction and modelling of harmful algal blooms event. Thus, we studied the abundance of these species in the coastal area of South Sea of Korea and their effects of temperature, salinity, irradiance and nutrient on the growth for the isolates. The timing for initial appearance of the three species around the coastal area of Namhaedo, Narodo and Wando was between Bate July and late August in 1999 when water temperature ranged from $22.8^{\circ}C\;to\;26.5^{\circ}C$ Vegetative cells of C. polykrikoides and G. impudicum were abundant until late September when water temperature had been dropped to less than $23^{\circ}C$. By contrast, vegetative cell of G. catenatum disappeared before early September, showing shorter period of abundance than the other two species in the South Sea. Both G. impudicum and G. catenatum revealed comparatively low density with a maximal cell density of 3,460 cells/L and 440 cells/L, respectively without making any bloom, while C. polykrikoides made massive blooms with a maximal cell density more than $40\times10^6$cells/L, The three species showed a better growth at the relatively higher water temperature ranging from 22 to $28^{\circ}C$ with their maximal growth rate at $25^{\circ}C$ in culture, which almost corresponded with the water temperature during the outbreak of C. polykrikoides in the coastal area of South Sea. Also, they all showed a relatively higher growth at the salinity from 30 to $35\%$. Specially, G. impudicum showed the euryhalic characteristics among the species, On the other hand, growth rate of G. catenatum decreased sharply with the increase of water temperature at the experimental ranges more than $35\%$. The higher of light intensities showed the better growth rates for the three species, Moreover, C. polykrikoides and G. impudirum continued their exponential growth even at 7,500 lux, the highest level of light intensity in the experiment, Therefore, It is assumed that C. polykrikoides has a physiological capability to adapt and utilize higher irradiance resulting in the higher growth rate without any photo inhibition response at the sea surface where there is usually strong irradiance during its blooming season. Although C. poiykikoides and G. impudicum continued their linear growth with the increase of nitrate ($NO_3^-$) and ammonium ($NH_4^-$) concentrations at less than the $40{\mu}M$, they didn't show any significant differences in growth rates with the increase of nitrate and ammonium concentrations at more than $40{\mu}M$, signifying that the nitrogen critical point for the growth of the two species stands between 13.5 and $40{\mu}M$. Also, even though both of the two species continued their linear growth with the increase of phosphate ($PO_4^{2-}$) concentrations at less than the $4.05{\mu}M$, there were no any significant differences in growth rates with the increase of phosphate concentrations at more than $4.05{\mu}M$, signifying that the phosphate critical point for the growth of the two species stands between 1.35 and $4.05{\mu}M$. On the other hand, C. polykrikoides has made blooms at the oligotrophic environment near Narodo and Namhaedo where the concentration of DIN and DIP are less than 1.2 and $0.3{\mu}M$, respectively. We attributed this phenomenon to its own ecological characteristics of diel vertical migration through which C. polykrikoides could uptake enough nutrients from the deep sea water near bottom during the night time irrespective of the lower nutrient pools in the surface water.

  • PDF

Physicochemical Changes of Food Waste Slurry Co-fermented with Pig Manure Slurry (음식물쓰레기와 돈분 액상물의 혼합부숙시 이화학적 특성 변화)

  • So, Kyu-Ho;Seong, Ki-Seog;Hong, Seung-Gil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.242-248
    • /
    • 2007
  • To find a feasibility of utilization of food waste slurry (FWS) generated during composting, FWS was combined with pig manure slurry (PMS) in various ratios and the change of nutrient contents and offensive odor of the combined slurries before and after fermentation were studied. The initial pH was 7.67 for PMS and 8.45 for FWS. However, during the fermentation, pH increased in the combined slurries with the higher FWS rate among the treatments while decreased in thosewith higher PMS rate. EC of each slurry sample showed that the difference among combined slurry samples has been reduced during fermentation and became stabilized in $21{\sim}23dS\;m^{-1}$ after 180 days. After 180 days fermentation, total nitrogen (T-N) decreased. T-N of mixture with a half and more FWS decreased up to 0.1%, less than the critical level (0.3%). The contents of O.M., T-N, phosphorus, calcium and magnesium decreased with fermentation while those of potash and salinity increased. From initial fermentation until 30 days, a lot of $NH_3$, as an offensive odor, was produced. However, it decreased steadily, except in higher PMS rate. In terms of producing $50{\mu}g\;ml^{-1}$ of $NH_3$, the top layer took 30 days after fertilization with FWS only, 45 days for utilized treatment with F75 (25 % of PMS), 75 days for utilized with F50 (50%) and F25 (75%) and 90 days for PMS only, respectively. $RNH_2$ also had similar trend with $NH_3$ but it was produced continuously as long fermentation proceeded. In terms of $RNH_2$, the decrease in concentration up to $50{\mu}g\;ml^{-1}$ were; 45 days for FWS only(F100), 105 days for F75 utilization, 120 daysfor F50, 165 days for F25, respectively. ethyl mercaptan was produced in PMS until 180 days after fertilization but it was not produced in FWS. Sensory tests as an integrated test of offensive odor were also done. FWS showed lower than 1 after 30 days from initial fermentation, while PMS had still offensive odor even up to 180 days from initial fermentation. It is probably affected by the continuous production of ethyl mercaptan and amines. However, considering in decrease T-N content caused by volatilization while offensive odor intensity according to official standard of fertilizer is lower than 2. Further study on controlling offensive odor needs to be done.