• Title/Summary/Keyword: critical loads

Search Result 737, Processing Time 0.031 seconds

Deterrent Strategy in the era of North Korea's WMD and Missile Threats : Challenges and the Ways to go (북 핵·미사일 시대의 억제전략 : 도전과 나아갈 방향)

  • Lee, Sang-Yup
    • Strategy21
    • /
    • s.41
    • /
    • pp.232-260
    • /
    • 2017
  • The purpose of this paper is to open a debate about what kind of deterrent strategy the ROK military should pursue in the era of NK's weapons of mass destruction and missile threats. I argue that the ROK military needs a comprehensive deterrent strategy that reflects the international security situations and trends and that builds on clear understanding of the basic concepts and how deterrence operates. The paper starts with surveying the basic knowledge of deterrence from the perspectives of both theory and practice. Then, it provides explanations on why deterrence against NK can be particularly difficult given the security environment in and around the Korean peninsula. For example, South Korea and North Korea hardly share 'common knowledge' that serves as a basic element for the operation of deterrence. Deterrence against North Korea involves complex situations in that both deterrence and compellence strategies may be relevant particularly to North Korea's WMD and missile threats. It also involves both immediate and general deterrence. Based on the discussion, I suggest several ideas that may serve as guidelines for establishing a deterrent strategy against NK. First, our threats for deterrence should be the ones that can be realized, particularly in terms of the international norms. In other words, they must be considered appropriate among other nations in the international community. Second, there should be separate plans for the different kinds of threats: one is conventional, local provocations and the other is WMD/missile related provocations. Third, we should pursue much closer cooperative relations with the U.S. military to enhance the effectiveness of immediate deterrence in the Korean peninsula. Fourth, the ROK military should aim to accomplish 'smart deterrence' maximizing the benefits of technological superiority. Fifth, the ROK military readiness and structure should be able to deny emerging North Korean military threats such as the submarine-launched ballistic missiles and intercontinental ballistic missiles. Lastly, in executing threats, we should consider that the current action influences credibility and reputation of the ROK, which in turn affect the decisions for future provocations. North Korea's WMD/missile threats may soon become critical strategic-level threats to South Korea. In retrospect, the first debate on building a missile defense system in South Korea dates back to the 1980s. Mostly the debate has centered on whether or not South Korea's system should be integrated into the U.S. missile defense system. In the meantime, North Korea has become a small nuclear power that can threaten the United States with the ballistic missiles capability. If North Korea completes the SLBM program and loads the missiles on a submarine with improved underwater operation capability, then, South Korea may have to face the reality of power politics demonstrated by Thucydides through the Athenians: "The strong do what they have the power to do, the weak accept what they have to accept."

Design and Evaluation of a Reservation-Based Hybrid Disk Bandwidth Reduction Policy for Video Servers (비디오 서버를 위한 예약기반 하이브리드 디스크 대역폭 절감 정책의 설계 및 평가)

  • Oh, Sun-Jin;Lee, Kyung-Sook;Bae, Ihn-Han
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.523-532
    • /
    • 2001
  • A Critical issue in the performance of a video-on-demand system is the required I/O bandwidth of the Video server in order to satisfy clients requests, and it is the crucial resource that may cause delay increasingly. Several approaches such as batching and piggybacking are used to reduce the I/O demand on the video server through sharing. Bathing approach is to make single I/O request for storage server by grouping the requests for the same object. Piggybacking is th policy for altering display rates of requests in progress for the same object to merge their corresponding I/O streams into a single stream, and serve it as a group of merged requests. In this paper, we propose a reservation-based hybrid disk bandwidth reduction policy that dynamically reserves the I/O stream capacity of a video server for popular videos according to the loads of video server in order to schedule the requests for popular videos immediately. The performance of the proposed policy is evaluated through simulations, and is compared with that of bathing and piggybacking. As a result, we know that the reservation-based hybrid disk bandwidth reduction policy provides better probability of service, average waithing time and percentage of saving in frames than batching and piggybacking policy.

  • PDF

Multiscale modeling of reinforced/prestressed concrete thin-walled structures

  • Laskar, Arghadeep;Zhong, Jianxia;Mo, Y.L.;Hsu, Thomas T.C.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.69-89
    • /
    • 2009
  • Reinforced and prestressed concrete (RC and PC) thin walls are crucial to the safety and serviceability of structures subjected to shear. The shear strengths of elements in walls depend strongly on the softening of concrete struts in the principal compression direction due to the principal tension in the perpendicular direction. The past three decades have seen a rapid development of knowledge in shear of reinforced concrete structures. Various rational models have been proposed that are based on the smeared-crack concept and can satisfy Navier's three principles of mechanics of materials (i.e., stress equilibrium, strain compatibility and constitutive laws). The Cyclic Softened Membrane Model (CSMM) is one such rational model developed at the University of Houston, which is being efficiently used to predict the behavior of RC/PC structures critical in shear. CSMM for RC has already been implemented into finite element framework of OpenSees (Fenves 2005) to come up with a finite element program called Simulation of Reinforced Concrete Structures (SRCS) (Zhong 2005, Mo et al. 2008). CSMM for PC is being currently implemented into SRCS to make the program applicable to reinforced as well as prestressed concrete. The generalized program is called Simulation of Concrete Structures (SCS). In this paper, the CSMM for RC/PC in material scale is first introduced. Basically, the constitutive relationships of the materials, including uniaxial constitutive relationship of concrete, uniaxial constitutive relationships of reinforcements embedded in concrete and constitutive relationship of concrete in shear, are determined by testing RC/PC full-scale panels in a Universal Panel Tester available at the University of Houston. The formulation in element scale is then derived, including equilibrium and compatibility equations, relationship between biaxial strains and uniaxial strains, material stiffness matrix and RC plane stress element. Finally the formulated results with RC/PC plane stress elements are implemented in structure scale into a finite element program based on the framework of OpenSees to predict the structural behavior of RC/PC thin-walled structures subjected to earthquake-type loading. The accuracy of the multiscale modeling technique is validated by comparing the simulated responses of RC shear walls subjected to reversed cyclic loading and shake table excitations with test data. The response of a post tensioned precast column under reversed cyclic loads has also been simulated to check the accuracy of SCS which is currently under development. This multiscale modeling technique greatly improves the simulation capability of RC thin-walled structures available to researchers and engineers.

Stability Analysis of Steel Cable-stayed Bridges under Construction Stage (폐합 전 강사장교의 안정성 해석)

  • Kim, Seung-Jun;Shim, Kyung-Suk;Won, Deok-Hee;Cho, Sun-Kyu;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.99-111
    • /
    • 2011
  • This paper presents an investigation of the structural stability of cable-stayed bridges in the construction stage, using geometric nonlinear finite-element analysis and considering various geometric nonlinearities, such as the sag effect of the cables, the P-${\Delta}$ effects of the girder and mast, and the large displacement effect. Initial shape analysis and construction-stage analysis were performed to determine the equilibrium of the structure in the construction stage. After that, geometric nonlinear analysis was performed to study structural stability. In this study, the weight of the derrick crane and the key segment were considered the main external loads, which were applied to the tip of the center span. The cable arrangement type and the stiffness ratios of the girder and mast were considered the main parameters of the analytic research. Based on the results of the analysis, the change in the buckling mode and critical load factors with respect to the cable arrangement type and the stiffness ratios of the girder and mast was investigated. The buckling modes of the steel cable-stayed bridges in the construction stage were classified, and the ranges of the stiffness ratios of the girder and mast, which show these classified buckling modes, were suggested.

Solution to Elasticity Problems of Structural Elements of Composite Materials (복합재료 구조 요소의 탄성문제에 대한 해)

  • Afsar, A.M.;Huq, N.M.L.;Mirza, F.A.;Song, J.I.
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.19-30
    • /
    • 2010
  • The present study describes a method for analytical solution to elastic field in structural elements of general symmetric laminated composite materials. The two dimensional plane stress elasticity problems under mixed boundary conditions are reduced to the solution of a single fourth order partial differential equation, expressed in terms of a single unknown function, called displacement potential function. In addition, all the components of stress and displacement are expressed in terms of the same displacement potential function, which makes the method suitable for any boundary conditions. The method is applied to obtain analytical solutions to two particular problems of structural elements consisting of an angle-ply laminate and a cross-ply laminate, respectively. Some numerical results are presented for both the problems with reference to the glass/epoxy composite. The results are highly accurate and reliable as all the boundary conditions including those in the critical regions of supports and loads are satisfied exactly. This verifies the method as a simple and reliable one as well as capable to obtain exact analytical solution to elastic field in structural elements of composite materials under mixed and any other boundary conditions.

Effective Prioritized HRW Mapping in Heterogeneous Web Server Cluster (이질적 웹 서버 클러스터 환경에서 효율적인 우선순위 가중치 맵핑)

  • 김진영;김성천
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.12
    • /
    • pp.708-713
    • /
    • 2003
  • For many years clustered heterogeneous web server architecture has been formed on the internet because the explosive internet services and the various quality of requests. The critical point in cluster environment is the mapping schemes of request to server. and recently this is the main issue of internet architecture. The topic of previous mapping methods is to assign equal loads to servers in cluster using the number of requests. But recent growth of various services makes it hard to depend on simple load balancing to satisfy appropriate latency. So mapping based on requested content to decrease response time and to increase cache hit rates on entire servers - so called “content-based” mapping is highly valuated on the internet recently. This paper proposes Prioritized Highest Random Weight mapping(PHRW mapping) that improves content-based mapping to properly fit in the heterogeneous environment. This mapping scheme that assigns requests to the servers with priority, is very effective on heterogeneous web server cluster, especially effective on decreasing latency of reactive data service which has limit on latency. This paper have proved through algorithm and simulation that proposed PHRW mapping show higher-performance by decrease in latency.

Algebraic Analysis for Partitioning Root and Stem Lodging in Rice Plant

  • Chang, Jae-Ki;Yeo, Un-Sang;Lee, Jeom-Sig;Oh, Byong-Geun;Kim, Jeong-Il;Yang, Sae-Jun;Ku, Yeon-Chung;Kim, Ho-Yeong;Sohn, Jae-Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.539-543
    • /
    • 2006
  • Lodging is classified as root lodging caused by the loss of supporting force in the root, bending caused by the deformation of the stem and breaking where the stem breaks down as loads exceeding critical elasticity were applied. This research excluded breaking which is not in a state of equilibrium and tried to partition the level of lodging using an algebraic model in root lodging and stem lodging, or bending. When a vertical load was applied, the deformation of the stem of rice plant showed the form of a quadratic equation. The trace of the panicle neck in the process of lodging was an ellipse-shape. When loading was pure root lodging, the trace of the panicle neck became a circle of which culm length is the radius. When it was a pure stem lodging, the trace of the panicle neck is an ellipse of which major axis is culm length and minor axis is 0.64* culm length. When both stem lodging and root lodging occurred in a natural setting, the partitioning of lodging can be calculated by a formula using eccentricity of an ellipse, S=e*100/0.768(S is the ratio of stem lodging in the whole lodging, e is eccentricity of the ellipse). This method is expected to be useful in simple lodging partitioning. We could also calculate the partitioning of stem lodging and root lodging as units of angles as an accuracy method, by using a straight line calculated by differentiating a quadratic equation of stem deformation at the origin of the coordinates. These two methods for dividing root and stem lodging showed different values. However, each of them showed almost same values with different lodging degree in one plant.

Ergonomic Design of Medic Work Table (MWT) for Medical Technologist

  • Choi, Kyeong-Hee;Lee, Sung-Yong;Lee, Jun-Hyub;Kong, Yong-Ku
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.595-609
    • /
    • 2016
  • Objective: The purpose of this study was to develop and validate the guidelines for Medic Work Table (MWT) based on the anthropometric data of medical technologists. Background: Users' anthropometric data such as sitting height, sitting elbow height, knee height, and so on are significant factors for designing comfortable and useful furniture. Thus, many guidelines for different types of desks and chairs based on the users' anthropometric data have been suggested to many researchers. However, few researches have been conducted to provide design guidelines for MWT for blood collecting task. Medical technologists often use their upper extremities to perform blood collecting task with high repetitions. These repeated motions could be a critical factor in the prevalence rate of Work-related Musculoskeletal Disorders (WMSDs). Therefore, a study on ergonomic design of MWT would be essential in preventing the WMSDs and improving the quality of the working environment of medical technologists. Method: This study suggested design guidelines for ergonomic MWT by focusing on the heights of the upper side and underside, depths of the inside and outside, and width of MWT through anthropometric studies and literature reviews. Afterwards, a new MWT was made using the suggested design guidelines for this study. Five healthy medical technologists participated to evaluate the original MWT and new MWT. All participants took part in the range of motion (ROM) test, electromyography (EMG) muscle activity test, and usability test to validate the suggested guidelines in this study. EMG signals of related muscles (Flexor Carpi Ulnaris, Extensor Carpi Ulnaris, Deltoid Anterior, and Biceps Branchii) were recorded through the surface electromyography system from both the original MWT and the new MWT. The ROM test of the shoulder and elbow flexion was also assessed using motion sensors. Results: The newly designed MWT showed decreased ROMs of the shoulder and elbow up to 22% and 18% compared to the original MWT. The muscle activities in the new MWT also showed a decrease of 13% in Anterior Deltoid, 6% in Biceps Brachii, 5% in Flexor Carpi Ulnaris, and 8% in Extensor Carpi Ulnaris muscle groups, compared to the original MWT. In the usability test, the satisfaction score of the new MWT was also 56.1% higher than that of the original MWT. Conclusion: This study suggested guidelines for designing MWT and validating the guidelines through qualitative and quantitative analyses. The results of motion analysis, muscle activity, and usability tests demonstrated that the newly designed MWT may lead to less physical stress, less awkward posture, and better physical user interface. Application: The recommended guidelines of the MWT would be helpful information for designing an ergonomic MWT that reduces physical loads and improves the performance of many medical technologists.

Effects of Shore Stiffness and Concrete Cracking on Slab Construction Load I: Theory (슬래브의 시공하중에 대한 동바리 강성 및 슬래브 균열의 영향 I: 이론)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Im, Ju-Hyeuk;Kim, Jae-Yo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.41-50
    • /
    • 2010
  • Long-term floor deflection caused by excessive construction load became a critical issue for the design of concrete slabs, as a flat plate is becoming popular for tall buildings. To estimate the concrete cracking and deflection of an early age slab, the construction load should be accurately evaluated. The magnitude of construction load acting on a slab is affected by various design parameters. Most of existing methods for estimating construction load addressed only the effects of the construction period per story, material properties of early age concrete, and the number of shored floors. In the present study, in addition to these parameter, the effects of shore stiffness and concrete cracking on construction load were numerically studied. Based on the result, a simplified method for estimating construction load was developed. In the proposed method, the calculation of construction load is divided to two steps: 1)Onset of concrete placement at a top slab. 2)Removal of shoring. At each step, the construction load increment is distributed to the floor slabs according to the ratio of slab stiffness to shore stiffness. The proposed method was compared with existing methods. In a companion paper, the proposed method will be verified by the comparison with the measurements of actual construction loads.

Effect of Configuration of Shaft and Helix Plate on Bearing Capacity of Moderate-size Helical Pile : I. Test-bed Construction and Field Loading Test (중소구경 헬리컬 파일의 축과 원판의 형상이 지지력에 미치는 영향 평가 : I. 시험시공과 현장재하시험)

  • Lee, Jongwon;Lee, Dongseop;Kim, Hyung-Nam;Choi, Hangseok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.31-39
    • /
    • 2014
  • The helical pile is a manufactured steel pile consisting of one or more helix-shaped bearing plates affixed to a central shaft. This pile is installed by rotating the shaft into the ground to support structural loads. The advantages of helical piles are no need for boring or grout process, and ability to install with relatively light devices. The bearing capacity of the helical pile is exerted by integrating the bearing capacity of each helix plate attached to the steel shaft. In this paper, to estimate the bearing capacity of moderate-size helical piles, 6 types of helical piles were constructed with different shaft diameter, plate configuration and the penetration depth. A series of field loading tests was performed to evaluate the effect of helical pile configuration on the bearing capacity of helical pile, constructed in two different shaft diameters (i.e. 73 mm and 114 mm). In the same way, the diameter of bearing plate was also changed from 400mm to 250mm with one or three plates. As well, the penetration depth was varied from 3m to 6m to analyze the relation between the penetration depth and the bearing capacity. As a result, not only the increase of the shaft diameter, but also the number or diameter of helix bearing plates enhances the bearing capacity. Especially the configuration of the helix plate is more critical than the shaft diameter.