• Title/Summary/Keyword: critical impact force

Search Result 62, Processing Time 0.022 seconds

Studies on Mechanical Interfacial Properties of Kevlar-29 Fibers Reinforced Composites (Kevlar-29 섬유강화 복합재료의 기계적 계면 특성 연구)

  • Park, Soo-Jin;Seo, Min-Kang;Ma, Tae-Jun;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.158-162
    • /
    • 2001
  • The effects of chemical treatment on Kevlar-29 fibers have been studied in a composite system. The surface characteristics of the Kevlar-29 fibers were characterized by pH, acid-base value and X-ray photoelectron spectroscopy (XPS). The mechanical interfacial properties of final composites were studied by interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$). Also, the impact properties of the composites were investigated in the differentiating studies between initiation and propagation energies, and ductile index (DI) along with maximum farce and total energy. It was found that the chemical treatment with phosphoric acid ($H_3PO_4$) solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improving the mechanical interfacial strength of the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force in a composite system.

  • PDF

On the static stability of nonlocal nanobeams using higher-order beam theories

  • Eltaher, M.A.;Khater, M.E.;Park, S.;Abdel-Rahman, E.;Yavuz, M.
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.51-64
    • /
    • 2016
  • This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.

Virtual Network Embedding based on Node Connectivity Awareness and Path Integration Evaluation

  • Zhao, Zhiyuan;Meng, Xiangru;Su, Yuze;Li, Zhentao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3393-3412
    • /
    • 2017
  • As a main challenge in network virtualization, virtual network embedding problem is increasingly important and heuristic algorithms are of great interest. Aiming at the problems of poor correlation in node embedding and link embedding, long distance between adjacent virtual nodes and imbalance resource consumption of network components during embedding, we herein propose a two-stage virtual network embedding algorithm NA-PVNM. In node embedding stage, resource requirement and breadth first search algorithm are introduced to sort virtual nodes, and a node fitness function is developed to find the best substrate node. In link embedding stage, a path fitness function is developed to find the best path in which available bandwidth, CPU and path length are considered. Simulation results showed that the proposed algorithm could shorten link embedding distance, increase the acceptance ratio and revenue to cost ratio compared to previously reported algorithms. We also analyzed the impact of position constraint and substrate network attribute on algorithm performance, as well as the utilization of the substrate network resources during embedding via simulation. The results showed that, under the constraint of substrate resource distribution and virtual network requests, the critical factor of improving success ratio is to reduce resource consumption during embedding.

A Study on Low Velocity Impact Characteristics of DP 780 High Strength Steel Sheet with Thickness of 1.7 mm on the Free Boundary Condition Using Three-Dimensional Finite Element Analysis (3 차원 유한요소해석을 이용한 자유경계조건에서의 두께 1.7 mm DP780 고강도 강판의 저 속 충격 특성 분석)

  • Ahn, Dong-Gyu;Nam, Gyung-Heum;Seong, Dae-Yong;Yang, Dong-Yol;Lim, Ji-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.46-56
    • /
    • 2010
  • The present research works investigated into the low velocity impact characteristics of DP 780 high strength steel sheet with 1.7 mm in thickness subjected to free boundary condition using three-dimensional finite element analysis. Finite element analysis was carried out via ABAQUS explicit code. Hyper-elastic model and the damping factor were introduced to improve an accuracy of the FE analysis. An appropriate FE model was obtained via the comparison of the results of the FE analyses and those of the impact tests. The influence of the impact energy and nose diameter of the impact head on the force-deflection curves, impact time, absorption characteristics of the impact energy, deformation behaviours, and stress-strain distributions was quantitatively examined using the results of FE analysis. The results of the FE analysis showed that the absorption rate of impact energy lies in the range of the 70.7-77.5 %. In addition, it was noted that the absorption rate of impact energy decreases when the impact energy increases and the nose diameter of the impact head decreases. The local deformation of the impacted region was rapidly increased when the impact energy was larger than 76.2 J and the nose diameter was 20 mm. A critical impact energy, which occur the instability of the DP780, was estimated using the relationship between the plastic strain and the impact energy. Finally, characteristics of the plastic energy dissipation and the strain energy density were discussed.

Assignment Model of Attack Aircraft for Multi-Target Area (다수표적지역에 대한 공격 항공기 할당모형)

  • No Sang-Gi;Ha Seok-Tae
    • Journal of the military operations research society of Korea
    • /
    • v.17 no.1
    • /
    • pp.159-176
    • /
    • 1991
  • The probability of target survival is the most important factor in the target assignment, Most of the studies about it have assumed the case of one target and ane weapon type. Therefore, they can not be applied to the real situation. In this paper. the quantity and type of enemy assets of the friendly force are considered simultaneously. Considered defense type is the coordinated defense with no impact point prediction. The objective function is to minimize the expected total survival value of targets which are scattered in the defense area. The rules of aircraft assignment are as follows : first, classify targets into several groups, each of those has the same desired damage level secondly. select the critical group which has the least survival value in accordance with the additional aircraft assignment, and finally. assign the same number of attack assets against each target in the critical group. In this paper, the attack assets, the escort assets, and the defense assets are considered. The model is useful to not only the simple aircraft assignment problem but also the complicated wargame models.

  • PDF

Analysis of a Chip Mounting System for Force and Impact Control

  • Lee, Duk-Young;Cho, Hyung-Suck;Shim, Jae-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.139.2-139
    • /
    • 2001
  • This paper presents identification and control of a surface mounting system. The mount head of the system is modeled to analyze its dynamic characteristics, which is critical to the placement performance of the mounter. Based on this model, an identification work is carried out to estimate the modeled parameters by using genetic algorithm (GA), which plays a role of minimizing an error between the actual response and the model response. Having obtained the identified parameters, we design a disturbance observer control to compensate the friction. The disturbance observer can estimate the friction force and the uncertainty of the system. From the experimental results, it is found that the proposed disturbance observer plus PID controller show a better performance than PID controller alone. In order to accomplish a stable contact content control for fast mounting a ...

  • PDF

Design of HEV-Relay to Improve Impact and Bounce Characteristics (충격 및 바운스 특성 향상을 위한 HEV-Relay의 설계)

  • Ko, Youn-Ki;Cho, Sang-Soon;Huh, Hoon;Lee, Sang-Yoeb;Park, Hong-Tae;Oh, Il-Sung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.491-496
    • /
    • 2008
  • A HEV-relay plays a significant role as a mechanical switch which determines the operation of a gasoline engine or an electric motor in a hybrid electric vehicle (HEV). The HEV-relay has critical two problems in the operating process. First, the unstable current can occur in the operating process of the HEV-relay due to the severe bounce between moving and fixed electrode. Second, noises occur due to impact between electrodes in HEV-relay. In this research, spring properties such as stiffness and initial compression force, and electrode shape are designed to reduce the bounce time and noises caused by impact between moving and fixed electrode. The operating process of HEV-relay is simulated using LS-DYNA3D as explicit finite element code. The optimum spring properties are determined using the response surface method (RSM) as the design methodology, and the electrode shape is newly designed through the modifying the stiffness of moving and fixed electrode.

  • PDF

A numerical study on effects of thermal buoyance force on number of jet fans for smoke control (도로터널 화재시 열부력이 제연용 제트팬 댓수에 미치는 영향에 대한 해석적 연구)

  • Yoo, Ji-Oh;Shin, Hyun-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.301-310
    • /
    • 2013
  • Jet fans are installed in road tunnels in order to maintain critical velocity when fire occurs. Generally the number of jet fans against fire are calculated by considering critical velocity and flow resistance by wall friction, vehicle drag force, thermal buoyance force and natural wind. In domestic case, thermal buoyance force is not considered in estimating the number of jet fans. So, in this study, we investigated the pressure loss due to the thermal buoyance force induced by tunnel air temperature rise and the impact of thermal buoyance force on the number of jet fans by the numerical fire simulation for the tunnel length(500, 750, 1000, 1500, 2000, 3500m) and grade (-1.0, -1.5, -2.0%). Considering the thermal buoyance force, number of jet fans have to be increased. Especially in the case of 100MW of heat release rate, the pressure loss due to thermal buoyance force exceed the maximum pressure loss due to vehicle drag resistance, so it is analyzed that number of 2~11 jet fans are needed additionally than current design criteria. Thus, in case of estimating the number of jet fans, it must be considered of thermal buoyance force induced tunnel air temperature rise by fire.

Nonlinear Dynamic Buckling Behavior of a Partial Spacer Grid Assembly

  • Yoon, Kyung-Ho;Kang, Heung-Seok;Kim, Hyung-Kyu;Song, Kee-Nam;Jung, Yeon-Ho
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.93-101
    • /
    • 2001
  • The spacer grid is one of the main structural components in the fuel assembly, which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. Therefore, the mechanical and structural properties of the spacer grids must be extensively examined while designing them. In this paper, a numerical method for predicting the buckling strength of spacer grids is presented. Numerical analyses on the buckling behavior of the spacer grids are performed for a various array of sizes of the grids considering that the spacer grid is an assembled structure with thin-walled plates and imposing proper boundary conditions by nonlinear dynamic finite element method using ABAQUS/Explicit. Buckling tests on several numbers of specimens of the spacer grid were also carried out in order to compare the results between the test and the simulation result. The drop test is accomplished by dropping a carriage on the specimen at a pre-determined position. From this test, the specimens are buckled only at the uppermost and the lowermost layer among the multi-cells, which is similar to the local buckling at the weakest point of the grid structure. The simulated results also similarly predicted the local buckling phenomena and were found to give good correspondence with the experimental values for the thin-walled grid structures.

  • PDF

A study on the transfer of discharged female soldiers to the reserve force: Focusing on the need for transfer and impact on reserve female soldiers (전역 여군의 예비역 편입에 관한 연구)

  • Jeon, Kiseok;Choi, Soonwon
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.167-174
    • /
    • 2024
  • While reserve forces play a critical role in modern warfare, the primary focus on reserve forces has been on men. Women's reserve forces have received little attention. The purpose of this study is to examine the need to increase the number of women in the reserve and the impact of increasing the number of women on active duty. The reasons for the need for women in the military are the decrease in the resources of the reserve force as well as the regular force due to the decrease in population, the development of fields where women can perform missions with advantages due to the changing patterns of warfare, and the changing situation of gender equality and the increasing role of women in society. However, it is currently optional, not mandatory, for female veterans to join the Reserve. The number of cadres entering the reserve may decrease as the number of active-duty women increases. Using a 2018 estimate of 13.9 percent of women transitioning to the Reserve, 194 of the 1,402 projected transitioning women in '27 will transition to the Reserve. This leaves an estimated shortfall of 1,208 reserve officers and NCO. This suggests that the policy of increasing the number of women on active duty could have a significant impact on the reserve force in the future, and further policy research is needed.