• Title/Summary/Keyword: critical displacement

Search Result 505, Processing Time 0.029 seconds

Treatment of Frontal Sinus Fractures According to Fracture Patterns (전두동 골절 양상에 따른 치료)

  • Ha, Ju-Ho;Kim, Yong-Ha;Nam, Hyun-Jae;Kim, Tae-Gon;Lee, Jun-Ho
    • Archives of Craniofacial Surgery
    • /
    • v.10 no.2
    • /
    • pp.91-96
    • /
    • 2009
  • Purpose: Frontal sinus fractures are relatively less common than other facial bone fractures. They are commonly concomitant with other facial bone fractures. They can cause severe complications but the optimal treatment of frontal sinus fractures remains controversial. Currently, many principles of treatment were introduced variously. The authors present valid and simplified protocols of treatment for frontal sinus fractures based on fracture pattern, nasofrontal duct injury, and complications. Methods: A retrospective chart review was performed on 36 cases of frontal sinus fractures between January, 2004 and January, 2009. The average age of patients was 33.7 years. Fracture patterns were classified by displacement of anterior and posterior wall, comminution, nasofrontal duct injury. These fractures were classified in 4 groups: I. anterior wall linear fractures; II. anterior wall displaced fractures; III. anterior wall displaced and posterior wall linear fractures; IV. anterior wall and posterior wall displaced fractures. Also, assessment of nasofrontal duct injury was conducted with preoperative coronal section computed tomographic scan and intraoperative findings. Patients were treated with various procedures including open reduction and internal fixation, obliteration, galeal frontalis flap and cranialization. Results: 12 patients are group I (33.3 percent), 14 patient were group II (38.8 percent), group III, IV were 5 each (13.9 percent). Frontal sinus fractures were commonly associated with zygomatic fractures (21.8 percent). 9 patients had nasofrontal duct injury. The complication rate was 25 percent (9 patients), including hypoesthesia, slight forehead irregularity, transient cerebrospinal fluid leakage. Conclusion: The critical element of successful frontal sinus fracture repair is precise diagnosis of the fracture pattern and nasofrontal duct injury. The main goal of management is the restoration of the sinus function and aesthetic preservation.

Study on the flexural behavior of corroded built-up cold-formed thin-walled steel beams

  • Zhang, Zongxing;Xu, Shanhua;Li, Han;Li, Rou;Nie, Biao
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.353-369
    • /
    • 2020
  • Eight cold-formed thin-walled steel beams were performed to investigate the effect of corrosion damage on the flexural behavior of steel beams. The relationships between failure modes or load-displacement curves and corrosion degree of steel beams were investigated. A series of parametric analysis with more than forty finite element models were also performed with different corrosion degrees, types and locations. The results showed that the reduction of cross-section thickness as well as corrosion pits on the surface would lead to a decline in the stiffness and flexural capacity of steel beams, and gradually intensified with the corrosion degree. The yield load, ultimate load and critical buckling load of the corroded specimen IV-B46-4 decreased by 22.2%, 26% and 45%, respectively. The failure modes of steel beams changed from strength failure to stability failure or brittle fracture with the corrosion degree increasing. In addition, thickness damage and corrosion pits at different locations caused the degradation of flexural capacity, the worst of which was the thickness damage of compression zone. Finally, the method for calculating flexural capacity of corroded cold-formed thin-walled steel beams was also proposed based on experimental investigation and numerical analysis results.

Transformation of Dynamic Loads into Equivalent Static Loads by the Selection Scheme of Primary Degrees of Freedom (주자유도 선정 기법에 의한 동하중의 등가 정하중으로의 변환)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.57-63
    • /
    • 2007
  • The systematic method to construct equivalent static load from a given dynamic load is proposed in the present study. Previously reported works to construct equivalent static load were based on ad hoc methods. Due to improper selection of loading position, they may results in unreliable structural design. The present study proposes the employment of primary degrees of freedom for imposing the equivalent static loads. The degrees of freedom are selected by two-level condensation scheme with reliability and efficiency. In several numerical examples, the efficiency and reliability of the proposed scheme is verified by comparison displacement for equivalent static loading and dynamic loading at the critical time.

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.

An Experimental Study on the Fracture Energy of Steel Fiber Reinforced Concrete Structures by the Effects of Fiber Contents (강섬유 혼입량에 의한 강섬유보강콘크리트의 파괴에너지에 관한 실험적 연구)

  • 장동일;채원규;정원우;손영환
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.79-88
    • /
    • 1991
  • In this study, fracture tests were carried out in order to investigate the fracture behavior of SFRC(Steel Fiber Peinforced Concrete) with initial cracks. The relationships between loading. strain, mld-span deflections and CMOD(Crack Mouth Opening Displacement) of the beams were observed under the three point loading system. The effect of the fiber content and the initial crack ratio on the concrete fracture behavior were studied and the fracture toughness, the critical energy release ratio and the fracture energy were also calcul ated from the test results. From the test results, it was known that when the fiber contents are between 0.5% and 1.0%, and 1.5% the average fracture energy of SFRC specimens is about 7~10 times. and about 15 times better than that of the plam concrete specimens respectively.ively.

Stability Analysis of Road Embankment Reinforced by Geogrid (지오그리드로 보강된 도로제방 사면의 안정성 해석)

  • Lee, Han-Min;Yoo, Han-Kyu;Suh, Young-Chan;Park, Un-Sang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.39-50
    • /
    • 2001
  • In this study, in order to investigate the effects of reinforcement length and vertical spacing on the factor of safety, the road embankment reinforced by geogrid was analyzed using RSS(Reinforced Slope Stability) program based on limit equilibrium analysis. The result by computer analysis showed that the factor of safety for reinforced slope increased with increasing length of reinforcement and with decreasing vertical spacing of reinforcement up to certain limit. Also, numerical analysis by FLAC was performed on reinforced slope to evaluate the horizontal displacement, horizontal stress, and distribution of tensile forces of reinforcements in the cases of several reinforcement length. The results of analysis showed that the critical failure mode was toe failure or slope failure and the effect by the additional reinforcement length on the slope stability was negligible under stabilized condition.

  • PDF

Development of Slope Stability Analysis Method Based on Discrete Element Method and Genetic Algorithm I. Estimation (개별요소법과 유전자 알고리즘에 근거한 사면안정해석기법의 개발 I. 검증)

  • Park Hyun-Il;Park Jun;Hwang Dae-Jin;Lee Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.115-122
    • /
    • 2005
  • In this paper, a new method composed of discrete element method and genetic algorithm has been introduced to estimate the safety factor and search critical slip surface on slope stability analysis. In case of estimating the safety factor, conventional methods of slope analysis based on the limit equilibrium do not satisfy the overall equilibrium condition; they must make assumptions regarding the inclination and location of the interstice forces. An alternative slope analysis method based on the discrete element method, which can consider the compatibility condition between force and displacement, is presented. Real-coded genetic algorithm is applied to the search for the minimum factor of safety in proposed analysis method. This search method is shown to be more robust than simple optimization routines, which are apt to find local minimum. Examples are also shown to demonstrate the applicability of the proposed method.

A Study on Change of Safety Factor according to Slope Analysis Method using Strength Parameters and Slope Change (강도 정수와 경사도 변화를 활용한 비탈면 해석기법에 따른 안전율 변화에 관한 연구)

  • Moon, Hyojong;Shim, Jeonghoon;Jeong, Jisu;Lee, Seungho
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • The slope stability analysis by the limit equilibrium method has the disadvantage that it can be applied only when the analysis is performed by setting the critical plane after analyzing the active surface many times and the soil is uniform and only the safety factor can be calculated. However, the analysis using the strength reduction analysis method has advantages that the engineer can judge various aspects and calculate the safety factor. In this study, the safety factor according to the change of slope and shear strength was compared and analyzed using limit equilibrium analysis and strength reduction method. It is suggested that it is desirable to use the strength reduction method which can synthetically review the stress, displacement, and strain in the soil.

Exact Solutions for Vibration and Buckling of An SS-C-SS-C Rectangular Plate Loaded by Linearly Varying In-plane Stresse (등변분포 평면응력을 받는 SS-C-SS-C 직사각형 판의 진동과 좌굴의 엄밀해)

  • 강재훈;심현주;장경호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.56-63
    • /
    • 2004
  • Exact solutions are presented for the free vibration and buckling of rectangular plates haying two opposite edges ( x=0 and a) simply supported and the other two ( y=0 and b) clamped, with the simply supported edges subjected to a linearly varying normal stress $\sigma$$_{x}$=- $N_{0}$[1-a(y/b)]/h, where h is the plate thickness. By assuming the transverse displacement ( w) to vary as sin(m$\pi$x/a), the governing partial differential equation of motion is reduced to an ordinary differential equation in y with variable coefficients. for which an exact solution is obtained as a power series (the method of Frobenius). Applying the clamped boundary conditions at y=0 and byields the frequency determinant. Buckling loads arise as the frequencies approach zero. A careful study of the convergence of the power series is made. Buckling loads are determined for loading parameters a= 0, 0.5, 1, 1.5. 2, for which a=2 is a pure in-plane bending moment. Comparisons are made with published buckling loads for a= 0, 1, 2 obtained by the method of integration of the differential equation (a=0) or the method of energy (a=1, 2). Novel results are presented for the free vibration frequencies of rectangular plates with aspect ratios a/b =0.5, 1, 2 when a=2, with load intensities $N_{0}$ / $N_{cr}$ =0, 0.5, 0.8, 0.95, 1. where $N_{cr}$ is the critical buckling load of the plate. Contour plots of buckling and free vibration mode shapes ate also shown.shown.

Precise Control of Antenna Position in Arc-Rail Based GB-SAR System (원형레일 기반 지상 SAR 시스템에서의 안테나 위치 정밀 제어 기술 재발)

  • Kim, Kwang-Eun;Cho, Seong-Jun;Sung, Nak-Hoon;Lee, Jae-Hee;Kang, Moon-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • Precise control of antenna position is very critical in ArcSAR system which uses an arc-rail as a platform for the antenna movement instead of linear rail. In order to minimize the antenna positional error, we improved the motion driving system and applied a newly developed motion control S/W which utilizes the real time antenna position information from magnetic linear scale and encoder. The experimental results showed that the rotational RMS error was reduced to $0.0062^{\circ}$ from $0.0432^{\circ}$. In terms of antenna positional RMS error for the arm length of 3m, it was reduced to 0.324mm from 2.262mm. It is expected that the ArcSAR system can be used to monitor the sub-millimetric displacement of terrain and structural targets.