• Title/Summary/Keyword: critical current($I_c$)

Search Result 163, Processing Time 0.036 seconds

Role of $\alpha_{1C}$ Carboxyl Terminal in Cardiac $Ca^{2+}$ Signaling

  • Woo, Sun-Hee
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.94-95
    • /
    • 2003
  • Local cytosolic rises of $Ca^{2+}$ appears to be critical in the regulation of many cellular activities, including muscle contraction, neurotransmitter secretion, and cell death. Cardiac $Ca^{2+}$ signaling similarly begins with discrete and localized rises of $Ca^{2+}$($Ca^{2+}$ sparks) triggered by $Ca^{2+}$ current ($I_{Ca}$). The large local releases of $Ca^{2+}$ in turn modulate L-type $Ca_{v}$1.2( ${\alpha}_{1C}$ $Ca^{2+}$ channels, suggesting that discrete $Ca^{2+}$ cross-signaling may occur in the micro-domains of ${\alpha}_{1C}$/ryanodine receptors (RyRs). (omitted)

  • PDF

An Analysis for The Ductile Crack Growth (연성 균열성장의 해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.103-111
    • /
    • 1990
  • This paper presents a methodology for predicting stable crack growth and instability of a cracked body under monotonically increasing load. It is based on a model that incremental crack extensions and load increments after fracture initiation occur by turns in sequence and the criterion that the crack grows by an incremebt .delta.a when the opening displacement at the current crack tip increases by a critical value V$_{c}$. It is shown that the value I$_{c}$ = V$_{c}$/ .delta. a is a material constant characterizing ductile crack growth resistance. Along with the fracture initiation toughness value, the constant is used for the calculation of the loads against crack extensions by adding up each increment. The specimen failure is defined to occur when the necessary load increment for crack extension is zero or when the limit load in the current ligament is reached. The predicted failure loads are in good agreement with the avaliable experimental failure loads for the compact and center-cracked tension specimens of 7075-T651, 2024-T351 aluminum alloys and 304 stainless steel.steel.

The Experiment of Flow Induced Vibration in PWR RCCAs

  • Kim, Sang-Nyung;Cheol Shin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.291-299
    • /
    • 2001
  • Recently, severe wear on the shutdown rod cladding of Ulchin Nuclear Power Plant #1, #2 were observed by the Eddy Current Test(E.C.T.). In particular, the wear at the sixth card location was up to 75%. The test results indicated that the Flow Induced Vibration(F.I.V.) might be the cause of the fretting wear resulting from the contact between Rod Cluster Control Assemblies(RCCAs) and their spacing cards(guide plates) arranged in the guide tube. From reviewing RCCAs fretting wear repots and analyzing the general characteristics of F.I.V. mechanism in the reactor, geometric layout and flow conditions around the control rod, it is concluded that the turbulence excitation is the most probable vibration mechanism of RCCA. To identify the governing mechanism of RCCA vibration, an experiment was performed for a representative rod position in which the most serious fretting wear experienced among the six rod positions. The experimental rig was designed and set up to satisfy the governing nondimensional numbers which are Reynolds number and mass damping parameter. The vibration amplitude measurement by the non-contact laser displacement sensor showed good agreements in the frequency and the maximum wearing(vibration) location with Ulchin E.C.T. results and Framatome report, respectively. The sudden increase in the vibration amplitude was sensed around the 6th guide plate with mass flow rate variation. Comparing the similitude rod behaviour with the idealized response of a cylinder in flow induced vibration, it was found that he dominant mechanism of vibration was transferred from turbulence excitation to periodic shedding at the mass flow ate 90ι/min. Also the critical velocity of the vibration in RCCAs was determined and the vibration can be prevented by reducing the bypass flow rate below the critical velocity.

  • PDF

Electro-mechanical properties in Bi-2223 superconducting composite tape due to axial fatigue loading (축방향 피로하중에 의한 Bi-2223 복합 초전도선재의 전기-기계적 특성)

  • Shin, Hyung-Seop;Dizon, John Ryan C.;Kim, Ki-Hyun;Oh, Sang-Soo;Ha, Dong-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.345-348
    • /
    • 2004
  • For practical applications, the evaluation of reliability or endurance of HTS conductors is necessary. The mechanical properties and the critical current, $I_c$, of multifilamentary Bi-2223 superconducting tapes, externally reinforced with stainless steel foils, subjected to high cycle fatigue loading in the longitudinal direction were investigated at 77K. The S-N curves were obtained and its transport property was evaluated with the increase of repeated cycles at different stress amplitudes. The effect of the stress ratio, R, on the $I_c$ degradation behavior under fatigue loading was also examined considering the practical application situation of HTS tapes. Microstructure observation was conducted in order to understand the L degradation mechanism in fatigued Bi-2223 tapes.

  • PDF

A Network QoS Model for Joint Integrated C4I Structure (합동지휘통제 통합망 구조 QoS 모델(안))

  • Park, Dongsuk;Oh, Donghan;Choi, Eunho;Lim, Jaesung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.106-114
    • /
    • 2020
  • NCW which is shaping favorable conditions with obtaining initiative through superiority in C2 and information sharing is critical to the result of the war in a modern warfare. An important requirement to attain superiority through an effective networking in a war-environment is to apply QoS to ensure priority in supporting critical mission and services. In order to obtain an effective NCOE through JCS-led QoS support, standard doucments have been reviewed and analyzed to understand the current level of technology and development. In addition, QoS-related policy documents which is currently being applied by the ROK armed forces have been analyzed to substantiated the JCS-led QoS model and propose the directions of development and enhancement required in the realm of technology, policy and system.

The Electrical.Mechanical Properties df Ag Sheathed Bi2223 High-$T_c$ Superconducting Wire (Ag 피복 Bi2223 고온초전도 선재의 전기적.기계적 특성)

  • Jang, H.M.;Oh, S.S.;Ha, D.W.;Ha, H.S.;Ryu, K.S.;Kim, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1339-1341
    • /
    • 1997
  • The various type Ag sheathed Bi-2223 tapes have been were fabricated by Powder-in-tube(PIT) process. The critical current density could be improved with the value of $23,000\;A/cm^2$(77 K, zero field) in the single concentric Bi-2223 tape. The bending property dependence of $I_c$ was improved in the double concentric Bi-2223 tape compared with single filamentary and single concentric one.

  • PDF

Stress analysis of the KSTAR vacuum vessel under thermal and electromagnetic loads (KSTAR 진공용기 열 및 전자기력 하중에 의한 응력해석)

  • Cho, S.;Kim, J.B.;Her, N.I.;Im, K.H.;Sa, J.W.;Yu, I.K.;Kim, Y.C.;Do, C.J.;Kwon, M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.325-330
    • /
    • 2001
  • One of the principal components of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak structure is the vacuum vessel, which acts as the high vacuum boundary for the plasma and also provides the structural support for internal components. Hyundai Heavy Industries Inc. has performed the engineering design of the vacuum vessel. Here the overall configuration of the KSTAR vacuum vessel was briefly described and then the design methodology and the analysis results were presented. The vacuum vessel consists of double walls, several ports, leaf spring style supports. Double walls are separated by reinforcing ribs and filled with baking/shielding water. The overall external dimensions of the main body are 3.39 m high, 1.11 m inner radius, 2.99 m outer radius, and made of SA240-316LN. The vacuum vessel was designed to be capable of achieving the base pressure of $1\times10^{-8}$ Torr, and also to be structurally capable of sustaining the vacuum pressure, the electromagnetic and thermal loads during plasma disruption and bakeout, respectively. The vacuum vessel will be baked out maximum $150^{\circ}C$ by hot pressurized water through the channels formed between double walls and the reinforcing ribs. A 3-D temperature distribution and the resulting thermal loads in the vessel were calculated during bakeout. It was found that the vacuum vessel and its supports were structurally rigid based on the thermal stress analysis. The maximum electromagnetic loads on the vacuum vessel induced by eddy and halo currents resulting from the engineering plasma radial and vertical disruption scenarios have been estimated. The stress analyses have been performed based on these electromagnetic loads and the resulting stresses at he critical locations of the vacuum vessel were within the allowable stresses.

  • PDF

Development of field programmable gate array-based encryption module to mitigate man-in-the-middle attack for nuclear power plant data communication network

  • Elakrat, Mohamed Abdallah;Jung, Jae Cheon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.780-787
    • /
    • 2018
  • This article presents a security module based on a field programmable gate array (FPGA) to mitigate man-in-the-middle cyber attacks. Nowadays, the FPGA is considered to be the state of the art in nuclear power plants I&C systems due to its flexibility, reconfigurability, and maintainability of the FPGA technology; it also provides acceptable solutions for embedded computing applications that require cybersecurity. The proposed FPGA-based security module is developed to mitigate information-gathering attacks, which can be made by gaining physical access to the network, e.g., a man-in-the-middle attack, using a cryptographic process to ensure data confidentiality and integrity and prevent injecting malware or malicious data into the critical digital assets of a nuclear power plant data communication system. A model-based system engineering approach is applied. System requirements analysis and enhanced function flow block diagrams are created and simulated using CORE9 to compare the performance of the current and developed systems. Hardware description language code for encryption and serial communication is developed using Vivado Design Suite 2017.2 as a programming tool to run the system synthesis and implementation for performance simulation and design verification. Simple windows are developed using Java for physical testing and communication between a personal computer and the FPGA.

MOD-processed YBCO coated conductors on the $CeO_2$-buffered IBAD-MgO template

  • Shin, G.M.;Ko, R.K.;Oh, S.S.;Moon, S.H.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.20-24
    • /
    • 2009
  • YBCO coated conductors (CC) on the $CeO_2$-buffered IBAD-MgO template were fabricated by metal-organic deposition (MOD) Process with Ba-trifluoroacetate and fluorine-free Y and Cu precursor materials. The precursor solution was coated on $CeO_2$-buffered IBAD MgO templates using the multiple dip-coating method, decomposed into inorganic precursors by pyrolysis up to $400^{\circ}C$ within 3 h, and finally fired at $740{\sim}800^{\circ}C$ in a reduced oxygen atmosphere. Microstructure, texture, and superconducting properties of YBCO films were found highly sensitive to both the firing temperature and time. The high critical current density ($J_C$) of $1.15\;MA/cm^2$ at 77.3K in the self-field could be obtained from $1\;{\mu}m$ thick YBCO CC, fired at $740^{\circ}C$ for 3.5 h, implying that high performance YBCO CC is producible on IBAD MgO template. Further enhancement of $J_C$ values is expected by improving the in-plane texture of $CeO_2$-buffer layer and avoiding the metal substrate contamination.