• Title/Summary/Keyword: criteria of condition evaluation

Search Result 274, Processing Time 0.034 seconds

Development of Management Guidelines and Procedure for Anthropometric Suitability Assessment: Control Room Design Factors in Nuclear Power Plants

  • Lee, Kyung-Sun;Lee, Yong-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.29-43
    • /
    • 2015
  • Objective: The aim of this study is to develop management guidelines and a procedure for an anthropometric suitability assessment of the main control room (MCR) in nuclear power plants (NPPs). Background: The condition of the MCR should be suitable for the work crews in NPPs. The suitability of the MCR depends closely on the anthropometric dimensions and ergonomic factors of the users. In particular, the MCR workspace design in NPPs is important due to the close relationship with operating crews and their work failures. Many documents and criteria have recommended that anthropometry dimensions and their studies are one of the foremost processes of the MCR design in NPPs. If these factors are not properly considered, users can feel burdened about their work and the human errors that might occur. Method: The procedure for the anthropometric suitability assessment consists of 5 phases: 1) selection of the anthropometric suitability evaluation dimensions, 2) establishment of a measurement method according to the evaluation dimensions, 3) establishment of criteria for suitability evaluation dimensions, 4) establishment of rating scale and improvement methods according to the evaluation dimensions, and 5) assessment of the final grade for evaluation dimensions. The management guidelines for an anthropometric suitability assessment were completed using 10 factors: 1) director, 2) subject, 3) evaluation period, 4) measurement method and criteria, 5) selection of equipment, 6) measurement and evaluation, 7) suitability evaluation, 8) data sharing, 9) data storage, and 10) management according to the suitability grade. Results: We propose a set of 17 anthropometric dimensions for the size, cognition/perception action/behavior, and their relationships with human errors regarding the MCR design variables through a case study. The 17 selected dimensions are height, sitting height, eye height from floor, eye height above seat, arm length, functional reach, extended functional reach, radius reach, visual field, peripheral perception, hyperopia/myopia/astigmatism, color blindness, auditory acuity, finger dexterity, hand function, body angle, and manual muscle test. We proposed criteria on these 17 anthropometric dimensions for a suitability evaluation and suggested an improvement method according to the evaluation dimensions. Conclusion: The results of this study can improve the human performance of the crew in an MCR. These management guidelines and a procedure for an anthropometric suitability assessment will be able to prevent human errors due to inadequate anthropometric dimensions. Application: The proposed set of anthropometric dimensions can be integrated into a managerial index for the anthropometric suitability of the operating crews for more careful countermeasures to human errors in NPPs.

An intelligent approach for managing suppliers in SCM using neural networks (SCM에서의 공급자 관리를 위한 신경망을 이용한 지능적 방법)

  • Han Hyeon Su;Lee Yeong Hae;Jo Min Gwan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.258-261
    • /
    • 2003
  • The purpose of this study is designing intelligent supplier management system with selected criteria for monitoring and evaluating suppliers by the information As suppliers keep changing their performance continuously according to the environment and with the passage or time. Companies need to monitor suppliers' condition continuously and choose the suitable action. This study considers a framework or supply chain management system usuig neural networks for ongoing partnership with criteria of supplier performance. The intelligent supplier management system that this study suggests ran offer the supplier evaluation criteria for monitoring and more efficient supply chain management ran be expected for cost reduction or supply chain management with this system.

  • PDF

A Study on the Development and of Establishment Performance Evaluation Criteria of Working Truck Mounted Attenuator (작업차량 장착용 충격흡수장치(TMA) 성능평가기준 수립 및 개발 연구)

  • Joo, Jae-Woong;Jang, Dae-Young;Park, Je-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.185-191
    • /
    • 2012
  • Rear collisions to expressway work trucks result many casualties these days. But, currently, no special measure are being taken except deploying sign trucks behind the working trucks. In the U.S and Europe, trucks with TMA(Truck Mounted Attenuator) are being deployed behind the working truck, which is regarded as the standard method for work area safety, thereby reducing the fatality rates and property damage tremendously. Also, standard for the performance of TMA are established and TMA can be used in the field only when it satisfies the standard. In Korea, neither the standard for nor any guide to the TMA exists. In the situation some manufacturer developed TMA without proper performance evaluation and marketed limited number of TMAs in the field. In the study, NCHRP350, which is the performance standard of expressway safety features of U.S. and materials related to the TMA standard in Europe have been reviewed to establish the Korean performance criteria. Based on the review, and incorporating existing Korean standard for crash cushions, domestic standard for TMA has been proposed and applied in developing Korean TMA and crash tested it to verify the performance. The original design developed was crash tested and modified. The newly proposed design was studied using impact simulation program several times. Modifications were made after each simulation and prototype was built and crash tested as per the newly established TMA performance criteria.

Examination of Correlation between the Condition Evaluation Results of Superstructure and the Safety and Load-carrying Capacity of Bridges (노후 교량 유지관리를 위한 상부구조물의 상태평가 결과와 교량의 안전성 및 내하력과의 상관관계 분석)

  • Park, Ju-Hyun;An, Hyojoon;Han, Manseok;Min, Jiyoung;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.64-71
    • /
    • 2020
  • In recent years, many infrastructure have been rapidly aging around the world, which grows interest in the maintenance of the infrastructure. Among the social infrastructure, bridge is a very important structure to transport lots of human and various products. The performance evaluation of bridge can be divided into the condition evaluation and safety evaluation, proposed by Korea Infrastructure Safety and Technology Corporation. However, there are no separate criteria for the performance evaluation of three-class bridges. In general, the performance of bridge is dominated by the results of the condition evaluation, which is lower than that of the safety evaluation. Therefore, this study assessed the correlation between the condition evaluation of superstructure and bridge and also between the condition evaluation and the safety and load-carrying capacity of bridge. The results of the study would provide a basic data for the more quantitative and higher relevant performance evaluation of the existing bridges, particularly for three-class bridges.

Patch Reinforcement and Safety Evaluation for Pressure Vessel with Internal Wall Thinning (내부 부식 감육부를 갖는 압력용기의 패치 보강 및 안전성 평가)

  • Song, Tae-Kwang;Chun, Yun-Jae;Myung, Man-Sik;Kim, Yon-Jae;Lee, Tae-Hee;Park, Ji-Yoon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.22-29
    • /
    • 2008
  • This paper provides the evaluation method for the pressure vessel with internal wall-thinning defect, which is based on ASME design criteria. Pressure vessel has wall-thinning partially and patch reinforcement has been attached for reliable operating. However, present partial wall thinning could be through wall thinning at the next inspection time with present corrosion progress speed. Therefore safety margin was calculated for various conditions from present wall-thinning condition to additive patch reinforced condition via two-dimensional and three-dimensional, geometrically linear FE analyses using elastic materials.

Proposed Development and Evaluation System for Existing Standardized Waterproof Technology Assessment Methods(Production technology, maintenance evaluation) (표준화된 방수기술 평가기법 개발 및 평가체계 구축 (생산기술, 유지관리 평가 중심))

  • Song, Je-Young;Seo, Hyun-Jae;Choi, Eun-Kyu;Lee, Jung-Hun;Kim, Byoungil;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.235-236
    • /
    • 2019
  • Waterproofing materials and construction methods have been developed and applied to various construction sites since the past. However, there many cases where the waterproofing performance is not satisfactory, leading to continuous water leakage. It has been observed that a key reason for this is because waterproofing method and material selection is not optimized in terms of the appropriate application area and environmental degradation factors. This paper proposes that future selection of waterproofing methods should consider the following evaluation criteria; 1) waterproof performance evaluation according to site conditions, 2) evaluation of construction method, 3) manufacturing and maintenance of waterproofing systems.

  • PDF

Development of Overload Evaluation System of Distribution Transformers using Real-Time Monitoring (실시간 감시를 이용한 배전용변압기 과부하 평가 시스템 개발)

  • Park, Chang-Ho;Yun, Sang-Yun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1741-1747
    • /
    • 2010
  • The development of overload management systems for distribution transformers offers new opportunities for improving the reliability of distribution systems. It allows network planners to optimize the system resource utilization and investment cost. Such an improvement in the flexibility of the distribution network is only possible if the operator has more accurate knowledge of the realtime conditions of distribution transformers. In this paper, we present an improved overload decision system for distribution transformers using realtime monitoring data. Our study can be categorized into two parts: (a) improvement in the criteria for judging the overload conditions of distribution transformers and (b) development of an overload evaluation system using realtime monitoring data. In order to determine the overload criteria, overload experiments are performed on sample transformers; the results of these experiments are used to define the relationship between the transformer overload and the increase in the top-oil temperature. To verify the accuracy of the experimental results, field tests are performed using specially manufactured transformers, the loads and top-oil temperatures of which can be measured. For arriving at online overload decisions, we propose methods whereby the measured load curve can be converted into an overload characteristic curve and the overload time can be calculated for any load condition. The developed system is able to evaluate the overload for individual distribution transformers and calculate the losses using realtime monitoring data.

A Study on Development of Pavement Management System for Cement Concrete Pavement (시멘트콘크리트포장의 유지관리체계(PMS)에 관한 연구)

  • 엄주용;김남호;임승욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.363-369
    • /
    • 1996
  • PMS(Pavement Management System) is the effective and efficient decision making system to provide pavements in an acceptable condition at the lowest life-cycle cost. As the highway system become larger, the necessity of the PMS in increasing. As of December 1995, the 3rd stage of PMS project was completed. The accomplishment of the research work can be itemized to the followings : $\bullet$ Calibration of PMS submodules (1) Pavement Condition Evaluation Model (2) Pavement Distress Prediction Model (3) Pavement Performance Prediction Mode (4) Selection of Pavement Rehabilitation Criteria (5) Optimization Technique for PMS Economic Analysis $\bullet$ Development of Computer Program to Implement PMS Logic $\bullet$ A Study to Implement the Automized Pavement Condition Survey Equipment to PMS $\bullet$ PMS Test Run $\bullet$ Development of PMS Operation Guideline $\bullet$ The 2nd Pavement Condition Survey for Long-Term Pavement Performance Monitoring.

  • PDF

Proposed Development and Evaluation System for Existing Standardized Waterproof Technology Assessment Methods (표준화된 방수기술 평가기법 개발 및 평가체계 구축)

  • Song, Je-Young;Lee, Sun-Gyu;Choi, Eun-Kyu;Lee, Jung-Hun;Kim, Byoungil;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.341-342
    • /
    • 2018
  • Waterproofing materials and construction methods have been developed and applied to various construction sites since the past. However, there many cases where the waterproofing performance is not satisfactory, leading to continuous water leakage. It has been observed that a key reason for this is because waterproofing method and material selection is not optimized in terms of the appropriate application area and environmental degradation factors. This paper proposes that future selection of waterproofing methods should consider the following evaluation criteria; 1) waterproof performance evaluation according to site conditions, 2) evaluation of construction method, 3) manufacturing and maintenance of waterproofing systems.

  • PDF

Evaluation of Portable Slipmeter using Human Perception (인간의 인지적 감각을 이용한 휴대용 미끄럼 측정기의 성능평가)

  • Choi, Hyung Jin;Kim, Jung Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.267-271
    • /
    • 2014
  • The objectives of this study were to evaluate the safe criteria of portable slipmeter using human perception onto the several different floor surfaces under contaminated conditions. It was difficult to find why many different slipmeters took there's own safe criteria. It is still unclear how thres hold values established in many literatures. Two different subjective slippery evaluating methods, AHP(Analytic Hierarchy Process) and Friedman test,were used to evaluate the perception of slipperiness of seven different floor surfaces under the contaminated condition with detergent solution. Twelve subjects worn same footwear and walked with self-selected step and cadence along the test floors. The SCOF(Static Coefficient of Friction) obtained for same test conditions with BOT-3000 was compared to perception of slipperiness to establish as a safe criteria. The very high significant correlation(r=0.97) was found between AHP and Friedman test. Also, The high significant correlation(r=0.96) was found between AHP and SCOF obtained with BOT-3000. The results suggested that the SCOF should be greater than 0.63 for safer walking. Perception rating obtained with AHP showed a high correlation with Friedman test and the SCOF obtained with BOT-3000 except for polished tile floor. The safe criteria obtained through this study were similar to ANSI/NFSIB101.1.