• 제목/요약/키워드: creep testing

Search Result 107, Processing Time 0.026 seconds

Degradation Damage Evaluation for Turbine Structural Components by Electrochemical Reactivation Polarization Test (전기화학적 재활성화 분극시험에 의한 터빈부재의 열화손상 평가)

  • Kwon, Il-Hyun;Baek, Seung-Se;Lyu, Dae-Young;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1241-1249
    • /
    • 2002
  • The extent of materials deterioration can be evaluated accurately by mechanical test such as impact test or creep test. But it is almost impossible to extract a large test specimen from in-service components. Thus material degradation evaluation by non-destructive method is earnestly required. In this paper, the material degradation for virgin and several aged materials of a Cr-Mo-V steel, which is an candidated as structural material of the turbine casing components for electric power plant, is nondestructively evaluated by reactivation polarization testing method. And, the results obtained from the test are compared with those in small punch(SP) tests recommended as a semi-nondestructive testing method using miniaturized specimen. In contrast to the aged materials up to 1,000hrs which exhibit the degradation behaviors with increased ${\Delta}[DBTT]_{SP}$, the improvement of mechanical property can be observed on the 2,000hrs and 3,000hrs aged materials. This is because of the softening of material due to the carbide precipitation, the increase of ferritic structures and the recovery of dislocation microstructure by long-time heat treatment. The reactivation rates($I_R/I_{Crit},\;Q_R/Q_{Crit}$) calculated by reactivation current densityt ($I_R$) and charge($Q_R$) in the polarization curves exhibit a good correlation with ${\Delta}[DBTT]_{SP}$ behaviors.

Leak Detection and Evaluation for Power Plant Boiler Tubes Using Acoustic Emission (음향방출을 이용한 보일러튜브 누설평가)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • Boiler tubes in power plants are often leaked due to various material degradations including creep and thermal fatigue damage under severe operating conditions such as high temperature and high pressure over an extended period of time. To monitor and diagnose the tubes on site and in real time, the acoustic emission (AE) technology was applied. We developed an AE leak detection system, and used it to study the variation of AE signal from the on-site tubes in response to the changes in the boiler operation condition and to detect the locations of leakage based on it. Detection of leak was performed by acquiring and evaluating the signals in separate regimes of high and low frequency signal. As a result of these studies, we found that on-line monitoring and detection of leak location for boiler tubes is possible using the developed system. Thus, the system is expected to contribute to the safe operation of power plants, and prevent economic losses due to potential leak.

New constitutive models for non linear analysis of high strength fibrous reinforced concrete slabs

  • Yaseen, Ahmed Asaad;Abdul-Razzak, Ayad A.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.121-131
    • /
    • 2022
  • The main goal of this study is to prepare a program for analyzing High Strength Steel Fibrous Reinforced Concrete (HSSFRC) slabs and predict the response and strength of the slab instead of preparing a prototype and testing it in the laboratory. For this purpose, new equations are proposed to represent the material properties of High Strength Steel Fibrous Reinforced Concrete. The proposed equations obtained from performing regression analysis on many experimental results using statistical programs. The finite element method is adopted for non-linear analysis of the slabs. The eight-node "Serendipity element" (3 DoF) is chosen to represent the concrete. The layered approach is adopted for concrete elements and the steel reinforcement is represented by a smeared layer. The compression properties of the concrete are modeled by a work hardening plasticity approach and the yield condition is determined depending on the first two stress invariants. A tensile strength criterion is adopted in order to estimate the cracks propagation. many experimental results for testing slabs are compared with the numerical results of the present study and a good agreement is achieved regarding load-deflection curves and crack pattern. The response of the load deflection curve is slightly stiff at the beginning because the creep effect is not considered in this study and for assuming perfect bond between the steel reinforcement and the concrete, however, a great agreement is achieved between the ultimate load from the present study and experimental results. For the models of the tension stiffening and cracked shear modulus, the value of Bg and Bt (Where Bg and Bt are the curvature factor for the cracked shear modulus and tension stiffening models respectively) equal to 0.005 give good results compared with experimental result.

Experimental Study of Frost Heaving using Temperature Controlled Triaxial Cell (투명 온도제어형 삼축셀을 이용한 흙의 동상 실내실험)

  • Ryu, Byung-Hyun;Jin, Hyun-Woo;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.6
    • /
    • pp.23-31
    • /
    • 2016
  • Nowadays abnormal coldness happens frequently in Korea and frost heaving causes unexpected ground deformation which results in severe problems for structures such as roadway, railroad and cutoff slope. 'Frost heave' as one of the primary phenomenon is considered to be an important factor together with 'adfreeze bond-strength' and 'creep deformation' for structural design process in permafrost area. Therefore, the fundamental study for frost heave has to be preceded for design of geo-structures in cold region. While various experimental apparatuses have been developed, there still exist a certain level of limitation to evaluate the frost-heave characteristics as design parameters. There are no standard testing method and criteria for analyzing frost heaving in Korea because temperature controlled testing apparatuses including a freezing chamber are expensive. In this paper, a new standard freezing and thawing testing apparatus is introduced, which simulates various freezing and thawing conditions in a soil specimen by using a temperature controlled triaxial cell. Frost heaving tests were performed to assess the new testing apparatus and experimental procedure to evaluate frost heaving for soils is proposed.

Fatigue characteristics of distributed sensing cables under low cycle elongation

  • Zhang, Dan;Wang, Jiacheng;li, Bo;Shi, Bin
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1203-1215
    • /
    • 2016
  • When strain sensing cables are under long-term stress and cyclic loading, creep may occur in the jacket material and each layer of the cable structure may slide relative to other layers, causing fatigue in the cables. This study proposes a device for testing the fatigue characteristics of three types of cables operating under different conditions to establish a decay model for observing the patterns of strain decay. The fatigue characteristics of cables encased in polyurethane (PU), GFRP-reinforced, and wire rope-reinforced jackets were compared. The findings are outlined as follows. The cable strain decayed exponentially, and the decay process involved quick decay, slow decay, and stabilization stages. Moreover, the strain decay increased with the initial strain and tensile frequency. The shorter the unstrained period was, the more similar the initial strain levels of the strain decay curves were to the stabilized strain levels of the first cyclic elongation. As the unstrained period increased, the initial strain levels of the strain decay curves approached those of the first cyclic elongation. The tested sensing cables differed in the amount and rate of strain decay. The wire rope-reinforced cable exhibited the smallest amount and rate of decay, whereas the GFRP-reinforced cable demonstrated the largest.

Mechanical Properties of Different Anatomical Sites of the Bone-Tendon Origin of Lateral Epicondyle

  • Han, Jung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.1013-1021
    • /
    • 2001
  • A series of rabbit common extensor tendon specimens of the humeral epicondyle were subjected to tensile tests under two displacement rates (100mm/min and 10mm/min) and different elbow flexion positions 45°, 90°and 135°. Biomechanical properties of ultimate tensile strength, failure strain, energy absorption and stiffness of the bone-tendon specimen were determined. Statistically significant differences were found in ultimate tensile strength, failure strain, energy absorption and stiffness of bone-tendon specimens as a consequence of different elbow flexion angles and displacement rates. The results indicated that the bone-tendon specimens at the 45°elbow flexion had the lowest ultimate tensile strength; this flexion angle also had the highest failure strain and the lowest stiffness compared to other elbow flexion positions. In comparing the data from two displacement rates, bone-tendon specimens had lower ultimate tensile strength at all flexion angles when tested at the 10mm/min displacement rate. These results indicate that creep damage occurred during the slow displacement rate. The major failure mode of bone-tendon specimens during tensile testing changed from 100% of midsubstance failure at the 90°and 135°elbow flexion to 40% of bone-tendon origin failure at 45°. We conclude that failure mechanics of the bone-tendon unit of the lateral epicondyle are substantially affected by loading direction and displacement rate.

  • PDF

Performance Test Method on the Influence Waterproofing as Behavior of Concrete Structure (지하 콘크리트 구조물의 거동에 대한 방수층의 대응성 평가에 관한 실험적 연구)

  • Noh Jong-Soo;Kwon Shi-Won;Kwak Kyu-Sung;Kwon Kee-Joo;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.77-81
    • /
    • 2004
  • The massive structures are not free to move with vibration, differential settlement, thermal stresses because, construction and expansion joint, crack etc., can be large enough to cause leakage as deformation of waterproofing. It has been depended on the test method of tensile/tear strength which is waterproofing performance as behavior of concrete structure crack. However, not to practically confirm the creep applied to concrete surface, even waterproofing membrane have more performance than definite strength and elasticity. Therefore, in this study will focus on the test method to consider a resistance performance about loose adhesion and deformation of waterproofing and behavior of concrete structure as construction/expansion joint, crack. Performance test method on the influence as behavior of concrete structure crack is to choose waterproofing materials and construction method which possible to confront with behavior of 50mm crack in the atmosphere and low temperature. Examine the deformation of waterproofing membrane and loose adhesion which can occur to structure in general job site, suggest standard testing method to analyze correlation waterproofing membrane and structure with 5-types of materials used in this study, such as Adhesion membrane and sheet complex, sheet and urethane complex, self-adhesive sheet, spray poly-urea, spray membrane of rubberized Asphalt.

  • PDF

Microstructure and Mechanical Properties of Aluminum Alloy Composites Strengthened with Alumina Particles (알루미나입자로 강화된 알루미늄합금 복합재료의 미세조직과 기계적 성질)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.199-205
    • /
    • 2013
  • The mechanical properties and microstructures of aluminum-matrix composites fabricated by the dispersion of fine alumina particles less than $20{\mu}m$ in size into 6061 aluminum alloys are investigated in this study. In the as-quenched state, the yield stress of the composite is 40~85 MPa higher than that of the 6061 alloy. This difference is attributed to the high density of dislocations within the matrix introduced due to the difference in the thermal expansion coefficients between the matrix and the reinforcement. The difference in the yield stress between the composite and the 6061 alloy decreases with the aging time and the age-hardening curves of both materials show a similar trend. At room temperature, the strain-hardening rate of the composite is higher than that of the 6061 alloy, most likely because the distribution of reinforcements enhances the dislocation density during deformation. Both the yield stress and the strain-hardening rate of the T6-treated composite decrease as the testing temperature increases, and the rate of decrease is faster in the composite than in the 6061 alloy. Under creep conditions, the stress exponents of the T6-treated composite vary from 8.3 at 473 K to 4.8 at 623 K. These exponents are larger than those of the 6061 matrix alloy.

Flexural ductility of reinforced HSC beams strengthened with CFRP sheets

  • Hashemi, Seyed Hamid;Maghsoudi, Ali Akbar;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.403-426
    • /
    • 2008
  • Externally bonding fiber reinforced polymer (FRP) sheets with an epoxy resin is an effective technique for strengthening and repairing reinforced concrete (RC) beams under flexural loads. Their resistance to electro-chemical corrosion, high strength-to-weight ratio, larger creep strain, fatigue resistance, and nonmagnetic and nonmetallic properties make carbon fiber reinforced polymer (CFRP) composites a viable alternative to bonding of steel plates in repair and rehabilitation of RC structures. The objective of this investigation is to study the effectiveness of CFRP sheets on ductility and flexural strength of reinforced high strength concrete (HSC) beams. This objective is achieved by conducting the following tasks: (1) flexural four-point testing of reinforced HSC beams strengthened with different amounts of cross-ply of CFRP sheets with different amount of tensile reinforcement up to failure; (2) calculating the effect of different layouts of CFRP sheets on the flexural strength; (3) Evaluating the failure modes; (4) developing an analytical procedure based on compatibility of deformations and equilibrium of forces to calculate the flexural strength of reinforced HSC beams strengthened with CFRP composites; and (5) comparing the analytical calculations with experimental results.

Combined Effects of Sustained Load and Temperature on Pull-off Strength and Creep Response between CFRP Sheet and Concrete Using Digital Image Processing (디지털 이미지 분석을 통한 지속 하중과 온도의 복합 환경이 CFRP 쉬트와 콘크리트의 부착강도 및 크리프 거동에 미치는 영향 분석)

  • Jeong, Yo-Seok;Lee, Jae-Ha;Kim, Woo-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.535-544
    • /
    • 2016
  • This paper aims at examining the effects of sustained load and elevated temperature on the time-dependent deformation of a carbon fiber reinforced polymer (CFRP) sheets bonded to concrete as well as the pull-off strength of single-lap shear specimens after the sustained loading period using digital images. Elevated temperature during the sustained loading period resulted in increased slip of the CFRP composites, whereas increased curing time of the polymer resin prior to the sustained loading period resulted in reduced slip. Pull-off tests conducted after sustained loading period showed that the presence of sustained load resulted in increased pull-off strength and interfacial fracture energy. This beneficial effect decreased with increased creep duration. Based on analysis of digital images, results on strain distributions and fracture surfaces indicated that stress relaxation of the epoxy occurred in the 30 mm closest to the loaded end of the CFRP composites during sustained loading, which increased the pull-off strength provided the failure locus remained mostly in the concrete. For longer sustained loading duration, the failure mode of concrete-CFRP bond region can change from a cohesive failure in the concrete to an interfacial failure along the concrete/epoxy interface, which diminished part of the strength increase due to the stress relaxation of the adhesive.