• Title/Summary/Keyword: creep prediction

Search Result 274, Processing Time 0.021 seconds

Study on Creep Life Prediction by Initial Strain Method for Friction Welded Joints of Heat Resisting Steels (내열강 마찰용접재의 ISM에 의한 크리프 수명예측에 관한 연구)

  • 김헌경;김일석;이연탁;공유식;오세규
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.46-52
    • /
    • 2001
  • In this paper, the real-time prediction of high temperature creep life was carried out for the friction welded joints of dissimilar heat resisting steels (SUH3-SUH35). various life prediction method such as LMP (Larson_miller Parameter) and ISM (initial strain method) were applied. The creep behaviors of those steels and the welds under static load were examined by ISM combined with LMP at 500, 600 and $700^{\circ}C$, and the relationship between these two methods was investigated. A real-time creep lie (tr, hr) prediction equation by initial strain (${\varepsilon}_0$, %) under any creep stress ($\sigma$, MPa) at any high temperature (T, K) was developed as follows: $t_r={\alpha}{\varepsilon}_0^{\beta}{\sigma}^{-1}$ where, ${\phi}=16: {\alpha}=10^{51.412-0.104T+5.375{\times}10^5T^2}$, $ {\beta}=-83.989+0.180T-9.957{\times}10^{-5}T^2,{\phi}=20:$ ${\alpha}=10^{69.910-0.146T+7.744{\times}10^{-5}T^2$, ${\beta}=-51.442+0.105T-5.595{\times}10^{-5}T^2$ for SUH3-SUH35 friction weld of =16mm and 20mm, respectively.

  • PDF

New phenomenological creep model for predicting creep of concrete with silica fume

  • Zgheib, Elise;Sawma, Rodolph;El Khoury, Judith;Raphael, Wassim
    • Advances in concrete construction
    • /
    • v.14 no.1
    • /
    • pp.71-77
    • /
    • 2022
  • Creep phenomenon affects the stability and integrity of concrete structures. An inaccurate prediction of these strains may lead to the appearance of cracks and excessive deflections which may cause in some cases the demolition of structures. In fact, the measured values of these uncontrolled strains appear often to be clearly different and larger than the expected ones. Therefore, an accurate prediction of concrete deformations is a necessity. As a matter of fact, the codified descriptions of this phenomenon are unreliable and don't consider the effect of admixtures. The physical nature of creep is not well understood and almost all creep models are mainly of empirical nature. To overcome this issue, a study of the correlation between different parameters affecting concrete creep is performed and a new model for predicting creep of concrete is elaborated. This new model considers the effect of admixtures, specifically the silica fume, in predicting concrete creep and allows an accurate prediction of this phenomenon. The proposed model is based on the observation of physical behavior of creep phenomenon. It targets at expressing creep compliance in terms of structural and environmental parameters. In fact, the experimental observations show that creep curves follow two kinetic regimes leading to a model called Phenomenological Creep Model. By adequate regressions and substitutions, and according to this model, we can express creep compliance in terms of structural, environmental parameters and admixture types and percentage. The proposed new Phenomenological Creep Model Silica Fume (PCM19SF) calculates accurately creep of concrete by considering the effect of silica fume.

Creep Behavior of 9% Ni Alloy Steel at Elevated Temperatures

  • Suh, Chang-Min;Oh, Sang-Yeob
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.12-17
    • /
    • 2011
  • Little design data is available for the creep life prediction of 9% Ni alloy in elevated temperatures. Therefore, in this study, a series of creep tests under 16 combined conditions with 4 kinds of stresses and 4 temperatures was performed to obtain creep design and life prediction data for 9% Ni alloy, with the following results. The stress exponents decreased as the test temperature increased. The creep activation energy gradually decreased as the stresses became larger. The Larson-Miller parameter (LMP) constant for this alloy was estimated to be about 2.

The Prediction of Concrete Creep

  • Shon, Howoong;Kim, Youngkyung
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.277-282
    • /
    • 2004
  • Creep deformation of concrete is often responsible for excessive deflection at loads which can compromise the performance of elements within structures. Hence, the prediction of the magnitude and rate of creep strain is an important requirement of the design process and management of structures. Although laboratory tests may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically based national design code models are relied upon to predict the magnitude of creep strain.This paper reviews the accuracy of creep predictions yielded by eight commonly used international "code type" models, all of which do not consider the same material parameters and yield a range of predicted strains, when compared with actual strains measured on a range of concretes in seventeen different investigations. The models assessed are the: SABS 0100 (1992), BS 8110 (1985), ACI 209 (1992), AS 3600 (1998), CEB-FIP (1970, 1978 and 1990) and the RILEM Model B3 (1995). The RILEM Model B3 (1995) and CEB-FIP (1978) were found to be the most and least accurate, respectively.

  • PDF

Creep Behaviours of Inconel 690 Alloy (인코넬 690 합금의 크리프거동)

  • 황경충;윤종호;최재하;김성청
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.54-61
    • /
    • 2002
  • Inconel 690 alloy has widely been used in power plant and high temperature facilities because it has high thermal resistance and toughness. But we have little design data about the creep behaviors of the alloy. Therefore, in this study, an apparatus has been designed and built for conducting creep tests under constant load conditions. A series of creep tests on Inconel 690 alloy have been performed to get the basic design data and life prediction of inconel products and we have gotten the following results. First, the stress exponents decrease as the test temperatures increase. Secondly, the creep activation energy gradually decreases as the stresses become bigger. thirdly, the constant of Larson-Miller Parameters on this alloy is estimated about 10. And last the fractographs at the creep rupture show both the ductile and the brittle fracture according to the creep conditions.

Creep Behaviours of Glasses Rim Material Alloy (안경테소재 합금(Ti-6AI-4V)의 크리프 특성)

  • 황경충;윤종호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.248-253
    • /
    • 2003
  • Titanium alloy has widely been used as glasses rim material because it has high specific strength and also is light, harmless to men. But, we have little design data about the creep behaviors of the alloy. Therefore, in this study, an apparatus has been designed and built for conducting creep tests under constant load conditions. A series of creep tests on them have been performed to get the basic design data and life prediction of titanium products and we have gotten the following results. First, the stress exponents decrease as the test temperatures increase. Secondly, the creep activation energy gradually decreases as the stresses become bigger. Thirdly, the constant of Larson-Miller parameters on this alloy is estimated about 13. And last, the fractographs at the creep rupture show both the ductile and the brittle fracture according to the creep conditions.

  • PDF

An Empirical Approach to Analyze Creep Rupture Behavior of P91 Steel

  • Aslam, Muhammad Junaid;Gur, Cemil Hakan
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.255-263
    • /
    • 2021
  • P91 steel has been a highly researched material because of its applicability for high-temperature applications. Considerable efforts have been made to produce experimental creep data and develop models for creep life prediction. As creep tests are expensive and difficult to conduct, it is vital to develop authenticated empirical methods from experimental results that can be utilized for better understanding of creep behavior and can be incorporated into computational models for reliable prediction of creep life. In this research, a series of creep rupture tests are performed on the P91 specimens within a stress range of 155 MPa to 200 MPa and temperature range of 640 ℃ (913 K) to 675 ℃ (948 K). The microstructure, hardness, and fracture surfaces of the specimens are investigated. To analyze the results of the creep rupture tests at a macro level, a parameter called creep work density is derived. Then, the relationships between various creep parameters such as strain, strain rate, time to rupture, creep damage tolerance factor, and creep work density are investigated, and various empirical equations are obtained.

Long-term Creep Life Prediction Methods of Grade 91 Steel (Grade 91 강의 장시간 크리프 수명 예측 방법)

  • Park, Jay-Young;Kim, Woo-Gon;EKAPUTRA, I.M.W.;Kim, Seon-Jin;Jang, Jin-Sung
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.45-51
    • /
    • 2015
  • Grade 91 steel is used for the major structural components of Generation-IV reactor systems such as a very high temperature reactor (VHTR) and sodium-cooled fast reactor (SFR). Since these structures are designed for up to 60 years at elevated temperatures, the prediction of long-term creep life is very important to determine an allowable design stress of elevated temperature structural component. In this study, a large body of creep rupture data was collected through world-wide literature surveys, and using these data, the long-term creep life was predicted in terms of three methods: Larson-Miller (L-M), Manson-Haferd (M-H) and Wilshire methods. The results for each method was compared using the standard deviation of error. The L-M method was overestimated in the longer time of a low stress. The Wilshire method was superior agreement in the long-term life prediction to the L-M and M-H methods.

Static Creep Behaviour of Super-Duralumin(Al 2024) (초 두랄루민(Al 2024)의 정적인 크리프 거동)

  • 황경충;윤종호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.22-27
    • /
    • 2004
  • Super-duralumin has widely been used as the part materials of aerospace and automobile industry because it has high specific strength and also is light. But, we have little design data about the creep behaviors of the alloy. Therefore, in this study, every creep test under four constant stress conditions have been conducted for four temperature conditions. A series of creep tests had been performed to get the basic design data and life prediction of super-duralurnin products and we have gotten the following results. First, the stress exponents showed the descending trend as the test temperatures increase. Secondly, the creep activation energy gradually decreased as the stresses become bigger. Thirdly, the constant of Larson-Miller parameters on this alloy was estimated about 6. And last, the fractographs at the creep rupture showed both the brittle fracture due to the transgranular rupture.

  • PDF

ISM에 의한 발전용 고온 배관재료 2.25Cr1Mo강의 고온 크리프 수명 예측에 관한 연구

  • Lee, Sang-Guk;Jeong, Min-Hwa;O, Se-Gyu;Song, Jeong-Geun
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.71-78
    • /
    • 1998
  • In this report for the assessment of creep properties of high-temperature tube materials in power plants, the long-time($10^4$~105h) creep life prediction by ISM for 2.25Cr1Mo steel was studied. It was clarified experimentally and quantitatively that the newly developed long-time creep life prediction equation was very coincident with the actual experimental data with high confidence, and the model was $t_r=\alpha\varepsilon_0^{\beta}\sigma^{-1}$.

  • PDF