• Title/Summary/Keyword: cracks detection

Search Result 331, Processing Time 0.025 seconds

A deep and multiscale network for pavement crack detection based on function-specific modules

  • Guolong Wang;Kelvin C.P. Wang;Allen A. Zhang;Guangwei Yang
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.135-151
    • /
    • 2023
  • Using 3D asphalt pavement surface data, a deep and multiscale network named CrackNet-M is proposed in this paper for pixel-level crack detection for improvements in both accuracy and robustness. The CrackNet-M consists of four function-specific architectural modules: a central branch net (CBN), a crack map enhancement (CME) module, three pooling feature pyramids (PFP), and an output layer. The CBN maintains crack boundaries using no pooling reductions throughout all convolutional layers. The CME applies a pooling layer to enhance potential thin cracks for better continuity, consuming no data loss and attenuation when working jointly with CBN. The PFP modules implement direct down-sampling and pyramidal up-sampling with multiscale contexts specifically for the detection of thick cracks and exclusion of non-crack patterns. Finally, the output layer is optimized with a skip layer supervision technique proposed to further improve the network performance. Compared with traditional supervisions, the skip layer supervision brings about not only significant performance gains with respect to both accuracy and robustness but a faster convergence rate. CrackNet-M was trained on a total of 2,500 pixel-wise annotated 3D pavement images and finely scaled with another 200 images with full considerations on accuracy and efficiency. CrackNet-M can potentially achieve crack detection in real-time with a processing speed of 40 ms/image. The experimental results on 500 testing images demonstrate that CrackNet-M can effectively detect both thick and thin cracks from various pavement surfaces with a high level of Precision (94.28%), Recall (93.89%), and F-measure (94.04%). In addition, the proposed CrackNet-M compares favorably to other well-developed networks with respect to the detection of thin cracks as well as the removal of shoulder drop-offs.

Crack Detection Method for Tunnel Lining Surfaces using Ternary Classifier

  • Han, Jeong Hoon;Kim, In Soo;Lee, Cheol Hee;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3797-3822
    • /
    • 2020
  • The inspection of cracks on the surface of tunnel linings is a common method of evaluate the condition of the tunnel. In particular, determining the thickness and shape of a crack is important because it indicates the external forces applied to the tunnel and the current condition of the concrete structure. Recently, several automatic crack detection methods have been proposed to identify cracks using captured tunnel lining images. These methods apply an image-segmentation mechanism with well-annotated datasets. However, generating the ground truths requires many resources, and the small proportion of cracks in the images cause a class-imbalance problem. A weakly annotated dataset is generated to reduce resource consumption and avoid the class-imbalance problem. However, the use of the dataset results in a large number of false positives and requires post-processing for accurate crack detection. To overcome these issues, we propose a crack detection method using a ternary classifier. The proposed method significantly reduces the false positive rate, and the performance (as measured by the F1 score) is improved by 0.33 compared to previous methods. These results demonstrate the effectiveness of the proposed method.

Automatic Visual Inspection System -Detection of Insulator′s Minute Crack- (자동 시각 검사 시스템 -현수애자의 미세균열 검출-)

  • 이상용;김용철
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.576-579
    • /
    • 2004
  • Eventhough the productivity has been improved remarkably by introducing automatic facilities, the 100% inspection is necessary because the possibility to produce large amount of defective goods is also increased. Since it is extremely unreasonable that workers inspect very large amount of products as 100% inspection, there has been many researches for the automatic inspection system. In this thesis, we develop an automatic detection system of suspension insulator's minutes cracks System The automatic detection system of suspension insulator's minute cracks: To detect the minute cracks of suspension insulators, images of the insulator are acquired with a progressive scan camera, rotating a suspension insulator on a turning table. And after the shadow and noises are eliminated by preprocessing techniques, we detect minute cracks using the features of them.

  • PDF

A Study on Crack Detection in Asphalt Road Pavement Using Small Deep Learning (스몰 딥러닝을 이용한 아스팔트 도로 포장의 균열 탐지에 관한 연구)

  • Ji, Bongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.13-19
    • /
    • 2021
  • Cracks in asphalt pavement occur due to changes in weather or impact from vehicles, and if cracks are left unattended, the life of the pavement may be shortened, and various accidents may occur. Therefore, studies have been conducted to detect cracks through images in order to quickly detect cracks in the asphalt pavement automatically and perform maintenance activity. Recent studies adopt machine-learning models for detecting cracks in asphalt road pavement using a Convolutional Neural Network. However, their practical use is limited because they require high-performance computing power. Therefore, this paper proposes a framework for detecting cracks in asphalt road pavement by applying a small deep learning model applicable to mobile devices. The small deep learning model proposed through the case study was compared with general deep learning models, and although it was a model with relatively few parameters, it showed similar performance to general deep learning models. The developed model is expected to be embedded and used in mobile devices or IoT for crack detection in asphalt pavement.

Detection Method for Road Pavement Defect of UAV Imagery Based on Computer Vision (컴퓨터 비전 기반 UAV 영상의 도로표면 결함탐지 방안)

  • Joo, Yong Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.599-608
    • /
    • 2017
  • Cracks on the asphalt road surface can affect the speed of the car, the consumption of fuel, the ride quality of the road, and the durability of the road surface. Such cracks in roads can lead to very dangerous consequences for long periods of time. To prevent such risks, it is necessary to identify cracks and take appropriate action. It takes too much time and money to do it. Also, it is difficult to use expensive laser equipment vehicles for initial cost and equipment operation. In this paper, we propose an effective detection method of road surface defect using ROI (Region of Interest) setting and cany edge detection method using UAV image. The results of this study can be presented as efficient method for road surface flaw detection and maintenance using UAV. In addition, it can be used to detect cracks such as various buildings and civil engineering structures such as buildings, outer walls, large-scale storage tanks other than roads, and cost reduction effect can be expected.

Road Crack Detection based on Object Detection Algorithm using Unmanned Aerial Vehicle Image (드론영상을 이용한 물체탐지알고리즘 기반 도로균열탐지)

  • Kim, Jeong Min;Hyeon, Se Gwon;Chae, Jung Hwan;Do, Myung Sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.155-163
    • /
    • 2019
  • This paper proposes a new methodology to recognize cracks on asphalt road surfaces using the image data obtained with drones. The target section was Yuseong-daero, the main highway of Daejeon. Furthermore, two object detection algorithms, such as Tiny-YOLO-V2 and Faster-RCNN, were used to recognize cracks on road surfaces, classify the crack types, and compare the experimental results. As a result, mean average precision of Faster-RCNN and Tiny-YOLO-V2 was 71% and 33%, respectively. The Faster-RCNN algorithm, 2Stage Detection, showed better performance in identifying and separating road surface cracks than the Yolo algorithm, 1Stage Detection. In the future, it will be possible to prepare a plan for building an infrastructure asset-management system using drones and AI crack detection systems. An efficient and economical road-maintenance decision-support system will be established and an operating environment will be produced.

Multi-scale crack detection using decomposition and composition (해체와 구성을 이용한 다중 스케일 균열 검출)

  • Kim, Young Ro;Chung, Ji Yung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.13-20
    • /
    • 2013
  • In this paper, we propose a multi-scale crack detection method. This method uses decomposition, composition, and shape properties. It is based on morphology algorithm, crack features. We use a morphology operator which extracts patterns of crack. It segments cracks and background using opening and closing operations. Morphology based segmentation is better than existing integration methods using subtraction in detecting a crack it has small width. However, morphology methods using only one structure element could detect only fixed width crack. Thus, we use decomposition and composition methods. We use a decimation method for decomposition. After decomposition and morphology operation, we get edge images given by binary values. Our method calculates values of properties such as the number of pixels and the maximum length of the segmented region. We decide whether the segmented region belongs to cracks according to those data. Experimental results show that our proposed multi-scale crack detection method has better results than those of existing detection methods.

Concrete crack detection using shape properties (형태의 특징을 이용한 콘크리트 균열 검출)

  • Joh, Beom Seok;Kim, Young Ro
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.17-22
    • /
    • 2013
  • In this paper, we propose a concrete crack detection method using shape properties. It is based on morphology algorithm and crack features. We assume that an input image is contaminated by various noises. Thus, we use a morphology operator and extract patterns of crack. It segments cracks and background using opening and closing operations. Morphology based segmentation is better than existing integration methods using subtraction in detecting a crack it has small width. Also, it is robust to noisy environment. The proposed algorithm classifies the segmented image into crack and background using shape properties of crack. This method calculates values of properties such as the number of pixels and the maximum length of the segmented region. Also, pixel counts of clusters are considered. We decide whether the segmented region belongs to cracks according to those data. Experimental results show that our proposed crack detection method has better results than those by existing detection methods.

Development of Crack Examination Algorithm Using the Linearly Integrated Hall Sensor Array (선형 홀 센서 배열을 사용한 결함 검사 알고리즘 개발)

  • Kim, Jae-Jun;Kim, Byoung-Soo;Lee, Jin-Yi;Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.30-36
    • /
    • 2010
  • Previous researches show that linearly integrated Hall sensor arrays (LIHaS) can detect cracks in the steel structure fast and effectively This paper proposes an algorithm that estimates the size and shape of cracks for the developed LIHaS. In most nondestructive testing (NDT), just crack existence and location are obtained by processing 1-dimensional data from the sensor that scans the object with relative speed in single direction. The proposed method is composed with two steps. The first step is constructing 2-dimensionally mapped data space by combining the converted position data from the time-based scan data with the position information of sensor arrays those are placed in the vertical direction to the scan direction. The second step is applying designed Laplacian filter and smoothing filter to estimate the size and shape of cracks. The experimental results of express train wheels show that the proposed algorithm is not only more reliable and accurate to detecting cracks but also effective to estimate the size and shape of cracks.

Crack Detection in Mortar Beams using Optical Time Domain Reflectometry (광학적 시간영역 반사시스템을 이용한 모르타르 보의 균열 탐사)

  • Rhim, Hong-Chul;Lee, Kyoung-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.3
    • /
    • pp.185-195
    • /
    • 2000
  • Detection of cracks in concrete beams using optical fiber sensors is useful for monitoring of concrete structures. In this study, optical time domain reflectometry (OTDR) is used to detect cracks. Resolution of OTDR is the main contributor to detect cracks in concrete structures. The OTDR used in this study can detect cracks with high precision of 0.5 m. Two mortar beams, reinforced with a 19 mm diameter steel bar, are made with the dimensions of 140 mm (width) ${\times}$ 200 mm (depth) ${\times}$ 2.000 mm (length). Two fibers are embedded inside each beam and two fibers are attached under the beams. The application of measurement system which consists of fiber and FC/PC connecter is studied. For this, theory of optics, resolution, crack moment, and size of specimens are investigated. From the measured data, it is verified that fibers which are attached under the beam can detect the crack in beams effectively. However, fibers embedded inside the beam are unable to detect cracks in beams using the OTDR in this study.

  • PDF