• 제목/요약/키워드: cracks detection

검색결과 329건 처리시간 0.023초

Detection of Deep Subsurface Cracks in Thick Stainless Steel Plate

  • Kishore, M.B.;Park, D.G.;Jeong, J.R.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • 제20권3호
    • /
    • pp.312-316
    • /
    • 2015
  • Unlike conventional Eddy Current Test (ECT), Pulsed Eddy Current (PEC) uses a multiple-frequency current pulse through the excitation coil. In the present study, the detection of subsurface cracks using a specially designed probe that allows the detection of a deeper crack with a relatively small current density has been attempted using the PEC technique. The tested sample is a piece of 304 stainless steel (SS304) with a thickness of 30mm. Small electrical discharge machining (EDM) notches were put in the test sample at different depths from the surface to simulate the subsurface cracks in a pipe. The designed PEC probe consists of an excitation coil and a Hall sensor and can detect a subsurface crack as narrow and shallow as 0.2 mm wide and 2 mm deep. The maximum distance between the probe and the defect is 28 mm. The peak amplitude of the detected pulse is used to evaluate the cracks under the sample surface. In time domain analysis, the greater the crack depth the greater the peak amplitude of the detected pulse. The experimental results indicated that the proposed system has the potential to detect the subsurface cracks in stainless steel plates.

Application of curvature of residual operational deflection shape (R-ODS) for multiple-crack detection in structures

  • Asnaashari, Erfan;Sinha, Jyoti K.
    • Structural Monitoring and Maintenance
    • /
    • 제1권3호
    • /
    • pp.309-322
    • /
    • 2014
  • Detection of fatigue cracks at an early stage of their development is important in structural health monitoring. The breathing of cracks in a structure generates higher harmonic components of the exciting frequency in the frequency spectrum. Previously, the residual operational deflection shape (R-ODS) method was successfully applied to beams with a single crack. The method is based on the ODSs at the exciting frequency and its higher harmonic components which consider both amplitude and phase information of responses to map the deflection pattern of structures. Although the R-ODS method shows the location of a single crack clearly, its identification for the location of multiple cracks in a structure is not always obvious. Therefore, an improvement to the R-ODS method is presented here to make the identification process distinct for the beams with multiple cracks. Numerical and experimental examples are utilised to investigate the effectiveness of the improved method.

A non-destructive method for elliptical cracks identification in shafts based on wave propagation signals and genetic algorithms

  • Munoz-Abella, Belen;Rubio, Lourdes;Rubio, Patricia
    • Smart Structures and Systems
    • /
    • 제10권1호
    • /
    • pp.47-65
    • /
    • 2012
  • The presence of crack-like defects in mechanical and structural elements produces failures during their service life that in some cases can be catastrophic. So, the early detection of the fatigue cracks is particularly important because they grow rapidly, with a propagation velocity that increases exponentially, and may lead to long out-of-service periods, heavy damages of machines and severe economic consequences. In this work, a non-destructive method for the detection and identification of elliptical cracks in shafts based on stress wave propagation is proposed. The propagation of a stress wave in a cracked shaft has been numerically analyzed and numerical results have been used to detect and identify the crack through the genetic algorithm optimization method. The results obtained in this work allow the development of an on-line method for damage detection and identification for cracked shaft-like components using an easy and portable dynamic testing device.

Semantic crack-image identification framework for steel structures using atrous convolution-based Deeplabv3+ Network

  • Ta, Quoc-Bao;Dang, Ngoc-Loi;Kim, Yoon-Chul;Kam, Hyeon-Dong;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.17-34
    • /
    • 2022
  • For steel structures, fatigue cracks are critical damage induced by long-term cycle loading and distortion effects. Vision-based crack detection can be a solution to ensure structural integrity and performance by continuous monitoring and non-destructive assessment. A critical issue is to distinguish cracks from other features in captured images which possibly consist of complex backgrounds such as handwritings and marks, which were made to record crack patterns and lengths during periodic visual inspections. This study presents a parametric study on image-based crack identification for orthotropic steel bridge decks using captured images with complicated backgrounds. Firstly, a framework for vision-based crack segmentation using the atrous convolution-based Deeplapv3+ network (ACDN) is designed. Secondly, features on crack images are labeled to build three databanks by consideration of objects in the backgrounds. Thirdly, evaluation metrics computed from the trained ACDN models are utilized to evaluate the effects of obstacles on crack detection results. Finally, various training parameters, including image sizes, hyper-parameters, and the number of training images, are optimized for the ACDN model of crack detection. The result demonstrated that fatigue cracks could be identified by the trained ACDN models, and the accuracy of the crack-detection result was improved by optimizing the training parameters. It enables the applicability of the vision-based technique for early detecting tiny fatigue cracks in steel structures.

딥러닝 기반의 분할과 객체탐지를 활용한 도로균열 탐지시스템 개발 (A Development of Road Crack Detection System Using Deep Learning-based Segmentation and Object Detection)

  • 하종우;박경원;김민수
    • 한국전자거래학회지
    • /
    • 제26권1호
    • /
    • pp.93-106
    • /
    • 2021
  • 최근 도로균열 탐지에 대한 많은 연구에서 딥러닝 기반의 접근법을 활용하면서 과거 알고리즘 기반의 접근법을 활용한 연구들보다 높은 성능과 성과를 보이고 있다. 그러나 딥러닝 기반의 많은 연구가 여전히 균열의 유형을 분류하는 것에 집중되어 있다. 균열 유형의 분류는 현재 수작업에 의존하고 있는 균열탐지 프로세스를 획기적으로 개선해 줄 수 있다는 점에서 상당한 기대를 받고 있다. 그러나 실제 도로의 유지보수 작업에 있어서는 균열의 유형뿐만 아니라 균열의 심각도에 관한 판단이 필수적이지만, 아직까지 도로균열 탐지와 관련된 연구들이 균열의 심각도에 대한 자동화된 산출까지 진전되지 못하고 있다. 균열의 심각도를 산출하기 위해서는 균열의 유형과 이미지 속 균열의 부위가 함께 파악되어야 한다. 본 연구에서는 균열 유형과 균열 부위의 동시적 탐지를 효과적으로 자동화하기 위해 딥러닝 기반의 객체탐지 모델인 Mobilenet-SSD를 활용하는 방법을 다루고 있다. 균열탐지의 정확도를 개선하기 위해 U-Net을 활용해 입력 이미지를 자동 분할하고, 이를 객체탐지 기법과 결합하기 위한 여러 실험을 진행하여 그 결과를 정리하였다. 결과적으로 U-Net을 활용한 이미지 의 자동 마스킹을 통해 객체탐지의 성능을 mAP 값이 0.9315가 되도록 향상시킬 수 있었다. 본 연구의 결과를 참고하여 도로포장 관리시스템의 구현에 균열탐지 기능의 자동화가 더욱 진전될 수 있다고 기대된다.

Non-Destructive Detection of Hertzian Contact Damage in Ceramics

  • Ahn, H.S.;Jahanmir, S.
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.114-121
    • /
    • 1995
  • An ultrasonic technique using normal-incident compressional waves was used to evaluate the surface and subsurface damage in ceramics produced by Hertzian indentation. Damage was produced by a blunt indenter (tungsten carbide ball) in glass-ceramic, green glass and silicon nitride. The damage was classified into two types; (1) Hertzian cone crack, in green glass and fine grain silicon nitride, and (2) distributed subsurface micro fractures, without surface damage, produced in glass ceramic. The ultrasonic technique was successful in detecting cone craks. The measurement results with the Hertzian cone cracks indicated that cracks perpendicular to the surface could be detected by the normal-incident compressional waws. Also shown is the capability of normal-incident compressional waves in detection distributed micro-sized cracks size of subsurface microfractures.

미소피로균열의 검출과 정류균열 (Detection and non-propagating cracks of small fatigue crack)

  • 이종형
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.603-609
    • /
    • 1990
  • 본 연구에서는 미소균열의 정의로서 균열의 크기가 재료의 조직의 크기와 order적으로 같은 균열의 특성이라는 것과 균열의 크기가 소성역 크기와 order적으로 같은 균열의 특성에 착안해서 탄소강 평활재와 예균열재(pre-cracked specimen)에 대 해서 응력비 R=-1 및 R=0의 피로한도 특성과 평활재의 미소균열의 검출 및 정류균열의 생성기구를 균열 열림 닫힘에 주목해서 검토하였다.

Physical interpretation of concrete crack images from feature estimation and classification

  • Koh, Eunbyul;Jin, Seung-Seop;Kim, Robin Eunju
    • Smart Structures and Systems
    • /
    • 제30권4호
    • /
    • pp.385-395
    • /
    • 2022
  • Detecting cracks on a concrete structure is crucial for structural maintenance, a crack being an indicator of possible damage. Conventional crack detection methods which include visual inspection and non-destructive equipment, are typically limited to a small region and require time-consuming processes. Recently, to reduce the human intervention in the inspections, various researchers have sought computer vision-based crack analyses: One class is filter-based methods, which effectively transforms the image to detect crack edges. The other class is using deep-learning algorithms. For example, convolutional neural networks have shown high precision in identifying cracks in an image. However, when the objective is to classify not only the existence of crack but also the types of cracks, only a few studies have been reported, limiting their practical use. Thus, the presented study develops an image processing procedure that detects cracks and classifies crack types; whether the image contains a crazing-type, single crack, or multiple cracks. The properties and steps in the algorithm have been developed using field-obtained images. Subsequently, the algorithm is validated from additional 227 images obtained from an open database. For test datasets, the proposed algorithm showed accuracy of 92.8% in average. In summary, the developed algorithm can precisely classify crazing-type images, while some single crack images may misclassify into multiple cracks, yielding conservative results. As a result, the successful results of the presented study show potentials of using vision-based technologies for providing crack information with reduced human intervention.

Automatic crack detection of dam concrete structures based on deep learning

  • Zongjie Lv;Jinzhang Tian;Yantao Zhu;Yangtao Li
    • Computers and Concrete
    • /
    • 제32권6호
    • /
    • pp.615-623
    • /
    • 2023
  • Crack detection is an essential method to ensure the safety of dam concrete structures. Low-quality crack images of dam concrete structures limit the application of neural network methods in crack detection. This research proposes a modified attentional mechanism model to reduce the disturbance caused by uneven light, shadow, and water spots in crack images. Also, the focal loss function solves the small ratio of crack information. The dataset collects from the network, laboratory and actual inspection dataset of dam concrete structures. This research proposes a novel method for crack detection of dam concrete structures based on the U-Net neural network, namely AF-UNet. A mutual comparison of OTSU, Canny, region growing, DeepLab V3+, SegFormer, U-Net, and AF-UNet (proposed) verified the detection accuracy. A binocular camera detects cracks in the experimental scene. The smallest measurement width of the system is 0.27 mm. The potential goal is to achieve real-time detection and localization of cracks in dam concrete structures.

이미지 기반 콘크리트 균열 탐지 검출 모델에 관한 연구 (Study on the Image-Based Concrete Detection Model)

  • 김기웅;유무영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.97-98
    • /
    • 2023
  • Recently, the use of digital technology in architectural technology is gradually increasing with the development of various industrial technologies. There are artificial intelligence and drones in the field of architecture, and among them, deep learning technology has been introduced to conduct research in areas such as precise inspection of buildings, and it is expressed in a highly reliable way. When a building is deteriorated, various defects such as cracks in the surface and subsidence of the structure may occur. Since these cracks can represent serious structural damage in the future, the detection of cracks was conducted using artificial intelligence that can detect and identify surface defects by detecting cracks and aging of buildings.

  • PDF