DOI QR코드

DOI QR Code

A non-destructive method for elliptical cracks identification in shafts based on wave propagation signals and genetic algorithms

  • Munoz-Abella, Belen (Department of Mechanical Engineering. Universidad Carlos III de Madrid) ;
  • Rubio, Lourdes (Department of Mechanical Engineering. Universidad Carlos III de Madrid) ;
  • Rubio, Patricia (Department of Mechanical Engineering. Universidad Carlos III de Madrid)
  • Received : 2011.11.22
  • Accepted : 2012.06.04
  • Published : 2012.07.25

Abstract

The presence of crack-like defects in mechanical and structural elements produces failures during their service life that in some cases can be catastrophic. So, the early detection of the fatigue cracks is particularly important because they grow rapidly, with a propagation velocity that increases exponentially, and may lead to long out-of-service periods, heavy damages of machines and severe economic consequences. In this work, a non-destructive method for the detection and identification of elliptical cracks in shafts based on stress wave propagation is proposed. The propagation of a stress wave in a cracked shaft has been numerically analyzed and numerical results have been used to detect and identify the crack through the genetic algorithm optimization method. The results obtained in this work allow the development of an on-line method for damage detection and identification for cracked shaft-like components using an easy and portable dynamic testing device.

Keywords

References

  1. ABAQUS Theory Manual (Version 6.7) (2007), Dassault Systemes Inc.
  2. Achenbach, J. (2009), "Structural health monitoring - what is the prescription?", Mech. Res. Commun., 36(2), 137-142. https://doi.org/10.1016/j.mechrescom.2008.08.011
  3. Al-Balushi, K.R. and Samanta, B. (2002), "Gear fault diagnosis using energy-based features of acoustic emission signals", P. I. Mech. Eng. I-J Sys., 216(I3), 249-263.
  4. Algernon, D., Grfe, B., Mielentz, F., Khler, B. and Schubert, F. (2008), "Imaging of the elastic wave propagation in concrete using scanning techniques: application for impact-echo and ultrasonic echo methods", J. Nondestruct. Eval., 27(1-3), 83-97. https://doi.org/10.1007/s10921-008-0034-4
  5. Amiri, G.G. (2011), "Damage detection in plates based on pattern search and genetic algorithms", Smart. Struct. Syst., 7(2), 117-132. https://doi.org/10.12989/sss.2011.7.2.117
  6. Bachschmid, N., Pennachhi, P. and Tanzi, A. (2010), "A sensitivy analysis of vibrations in cracked turbogenerator units versus crack position and depth", Mech. Syst. Signal Pr., 24(3), 844-859. https://doi.org/10.1016/j.ymssp.2009.10.001
  7. Bao, Y.G. and Wang, X.D. (2009), "Crack identification based on optimization methods using harmonic elastic waves", Int. J. Fracture., 160(1), 1-18. https://doi.org/10.1007/s10704-009-9394-8
  8. Bou Matar, O., Guerder, P.Y., Li, Y.F., Vandewoestyne, B. and Van Den Abeele, K. (2012), "A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation", J. Acoust. Soc. Am., 131(5), 3650-3663. https://doi.org/10.1121/1.3693654
  9. Buezas, F.S., Rosales, M.B. and Filipich, C.P. (2011), "Damage detection with genetic algorithms taking into account a crack contact model", Eng. Fract. Mech., 78(4), 695-712. https://doi.org/10.1016/j.engfracmech.2010.11.008
  10. Cademi, S. and Greco, A. (2006), "The influence of instrumental errors on the static identification of damage parameters for elastic beams", Comput. Struct., 84(26-27), 1696-1708. https://doi.org/10.1016/j.compstruc.2006.03.010
  11. Carpinteri, A. (1993), "Shape chage of surface cracks in round bars under cyclic axial loading", Int. J. Fatigue., 15(1), 21-26. https://doi.org/10.1016/0142-1123(93)90072-X
  12. Farrar, C. and Lieven, N. (2007), "Damage prognosis: the future of structural health monitoring", Philos. T. R. Soc. A., 365(1851), 623-632. https://doi.org/10.1098/rsta.2006.1927
  13. Fasel, T.R., Kennel, M.B., Todd, M.D., Clayton, E.H. and Park, G. (2009), "Damage state evaluation of experimental and simulated bolted joints using chaotic ultrasonic waves", Smart. Struct. Syst., 5(4), 329-344. https://doi.org/10.12989/sss.2009.5.4.329
  14. Glushkov, Y., Glushkova, N.V. and Krivonos, A.S. (2010), "The excitation and propagation of elastic waves in multilayered anisotropic composites", J. Appl. Math., 74(3), 297-305.
  15. Grabowska, J., Palacz, M. and Krawczukm, M. (2008), "Damage identification by wavelet analysis", Mech. Syst. Signal Pr., 22(7), 1623-1635. https://doi.org/10.1016/j.ymssp.2008.01.003
  16. Graff, K.F. (1975), Wave motion in elastic solids, Oxford University Press
  17. Huang, Y.H., Ni, S.H., Lo, K.F. and Charng, J.J. (2010), "Assessment of identifiable defect size in a drilled shaft using sonic echo method: Numerical simulation", Comput. Geotech., 37(6), 757-768. https://doi.org/10.1016/j.compgeo.2010.06.002
  18. Idesman, A.V., Subramanian, K., Schmidt, M., Foley, J.R., Tu, Y. and Sierakowski, R.L. (2010), "Finite element simulation of wave propagation in an axisymmetric bar", J. Sound Vib., 329(14), 2851-2872. https://doi.org/10.1016/j.jsv.2010.01.021
  19. Idesman, A.V., Schmidt, M. and Foley, J.R. (2011), "Accurate 3D finite element simulation of elastic wave propagation with the combination of explicit and implicit time-integration methods", Wave Motion, 48, 626-634. https://doi.org/10.1016/j.wavemoti.2011.04.017
  20. Ishida, Y. (2008), "Cracked rotors: Industrial machine case histories and nonlinear effects shown by simple jeffcott rotor", Mech. Syst. Signal Pr., 22(4), 805-817. https://doi.org/10.1016/j.ymssp.2007.11.005
  21. Kaczmarek, Z. (2008), "Elastic bar transfer functions determination using one-point strain measurements", Sensor. Actuat. A-Phys., 147(1), 121-126. https://doi.org/10.1016/j.sna.2008.04.020
  22. Kanga, T., Dong-Hoon, L., Sung-Jin, S., Hak-Joon, K., Young-Do, J. and Hyun-Joon, C. (2011), "Enhancement of detecting defects in pipes with focusing techniques", NDT&E. Int., 44(2), 178-187. https://doi.org/10.1016/j.ndteint.2010.11.009
  23. Kiernan, S., Cui, L. and Gilchrist, M.D. (2009), "Propagation of a stress wave through a virtual functionally graded foam", Int. J. Nonlinear Mech., 44(5), 456-468. https://doi.org/10.1016/j.ijnonlinmec.2009.02.006
  24. Kim, J.K., Woo, J. and Won-Bae, Na. (2008), "Finite element simulation of two-point elastic wave excitation method for damage detection in concrete structures", Russ. J. Nondestruct Nondestruct+, 44(10), 719-726. https://doi.org/10.1134/S1061830908100094
  25. Krawczuk, M. (2002), "Application of spectral beam finite element with a crack and iterative search technique for damage detection", Finite Elem. Anal. Des., 38(6), 537-548. https://doi.org/10.1016/S0168-874X(01)00084-1
  26. Krawczuk, M., Palacz, M. and Ostachowicza, W. (2004), "Wave propagation in plate structures for crack detection", Finite Elem. Anal. Des., 40(9-10), 991-1004. https://doi.org/10.1016/j.finel.2003.03.001
  27. LaBerge, K. (2007), "Analysis of the elastic wave behavior in cracked shaft", Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers.
  28. Li, S., Liu, Y., Zhu, R., Li, H. and Ding, W. (2010), "Research on feature extraction experiment for acoustic emission signal of rotor crack fault", Appl. Mech. Mater., 34-35, 1005-1009. https://doi.org/10.4028/www.scientific.net/AMM.34-35.1005
  29. Mani, G., Quinn, D.D. and Kasarda, M. (2006), "Active health monitoring in a rotating cracked shaft using active magnetic bearings as force actuators", J. Sound Vib., 294(3), 454-465. https://doi.org/10.1016/j.jsv.2005.11.020
  30. Meia, C., Karpenko, Y., Moody, S. and Allen, D. (2006), "Analytical approach to free and forced vibrations of axially loaded cracked Timoshenko beams", J. Sound Vib., 291, 1041-1060. https://doi.org/10.1016/j.jsv.2005.07.017
  31. Mitra, M. and Gopalakrishnan, S. (2007), "Wave propagation in imperfectly bonded single walled carbon nanotube-polymer composites", J. Appl. Phys., 102(8), 084301. https://doi.org/10.1063/1.2798869
  32. Papadopoulos, C.A. and Dimarogonas, A.D. (1987), "Coupled longitudinal and bending vibrations of a rotating shaft with an open crack", J. Sound Vib., 117(1), 81-93. https://doi.org/10.1016/0022-460X(87)90437-8
  33. Resende, R., Lamas, L.N., Lemos, J.V. and Calada, R. (2010), "Micromechanical modelling of stress waves in rock and rock fractures", Rock Mech. Rock Eng., 43(6), 741-761. https://doi.org/10.1007/s00603-010-0098-1
  34. Rubio, L., Muñoz-Abella, B. and Loaiza, G. (2009), "Numerical simulation of wave propagation in cracked shafts", Proceedings of the 9th International conference of the mechanical and physical behaviour under dynamic loading.
  35. Rubio, L., Munoz-Abella, B. and Loaiza, G. (2011), "Static behaviour of a shaft with an elliptical crack", Mech. Syst. Signal Pr., 25(5), 1674-1686. https://doi.org/10.1016/j.ymssp.2010.12.013
  36. Ryua, K.S., Nahmb, S.H., Parkc, J.S., Yua, K.M., Kima, Y.B. and Sond, D. (2002), "A new non-destructive method for estimating the remanent life of a turbine rotor steel by reversible magnetic permeability", J. Magn. Magn. Mater., 251, 196-201. https://doi.org/10.1016/S0304-8853(02)00574-7
  37. Sabnavis, G., Kirik, R.G., Kasarda, M. and Quinn, D. (2004), "Cracked shaft detection and diagnostics: a literature review", Shock Vib., 36(4), 287-296. https://doi.org/10.1177/0583102404045439
  38. Sinou, J.J. and Lees, A.W. (2005), "The influence of cracks in rotating shafts", J. Sound Vib., 285(4-5), 1015- 1037. https://doi.org/10.1016/j.jsv.2004.09.008
  39. Tenenbaum, R.A., Stutz, L.T. and Fernandes, K.M. (2011), "Comparison of vibration and wave propagation approaches applied to assess damage influence on the behavior of Euler-Bernoulli beams", Comput. Struct., 89(19-20), 1820-1828. https://doi.org/10.1016/j.compstruc.2010.10.006
  40. Tian, J., Li, Z. and Su, X. (2003), "Crack detection in beams by wavelet analysis of transient flexural waves", J. Sound Vib., 261(4), 715-727. https://doi.org/10.1016/S0022-460X(02)01001-5
  41. Toutountzakis, T., Tan, C.K. and Mba, D. (2005), "Application of acoustic emission to seeded gear fault detection", NDT&E. Int., 38(1), 27-36. https://doi.org/10.1016/j.ndteint.2004.06.008
  42. Uhl, T., Szwedo, M. and Bednarz, J. (2008), "Application of Active Thermography for SHM of Mechanical Structures", Proceedings of the Fourth European Workshop on Structural Health Monitoring.
  43. Wang, Y.M., Chen, X.F. and He, Z.J. (2011), "Daubechies wavelet finite element method and genetic algorithm for detection of pipe crack", J. Nondestruct. Eval., 26(1), 87-99. https://doi.org/10.1080/10589759.2010.521826
  44. Yang, J., Sudak, L. and Heping, X. (2007), "Study on stress wave propagation in fractured rocks with fractal joint surfaces", Int. J. Solids Struct., 44(13), 4256-4271. https://doi.org/10.1016/j.ijsolstr.2006.11.015
  45. Zeinoddini, M., Parke G.A.R. and Harding, J.E. (2008), "Interface forces in laterally impacted steel tubes", Exp. Mech., 48(3), 265-280. https://doi.org/10.1007/s11340-007-9111-3
  46. Zhou, T., Sun, Z., Xu, J. and Han, W. (2005), "Experimental analysis of cracked rotor", J. Dyn. Syst. - T. ASME, 127, 313-320. https://doi.org/10.1115/1.1978908
  47. Zimmer, A, Vrana, J., Meiser, J., Maximini, W. and Blaes, N. (2010), "Evolution of the ultrasonic inspection of heavy rotor forgings over the last decades", Proceedings of the AIP Conference Review of Quantitative Nondestructive Evaluation.

Cited by

  1. A developed hybrid method for crack identification of beams vol.16, pp.3, 2015, https://doi.org/10.12989/sss.2015.16.3.401
  2. Elliptical Crack Identification in a Nonrotating Shaft vol.2018, pp.1875-9203, 2018, https://doi.org/10.1155/2018/4623035
  3. Guided wave analysis of air-coupled impact-echo in concrete slab vol.20, pp.3, 2017, https://doi.org/10.12989/cac.2017.20.3.257
  4. Mechanical parameters detection in stepped shafts using the FEM based IET vol.20, pp.4, 2012, https://doi.org/10.12989/sss.2017.20.4.473