• Title/Summary/Keyword: cracking pattern

Search Result 99, Processing Time 0.024 seconds

On Corrosion Behaviors in Welded Zone of API 5L-X65 Steel for Natural Gas Transmission (천연가스 수송용 API 5L-X65강 용접부의 부식거동에 관한 연구)

  • JO SANG-KEUN;SONG HAN-SEOP;KONG Yu-SIK;KIM YOUNG-DAI
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.50-56
    • /
    • 2004
  • This study is on the constant-current stress corrosion test, related to the load stress, in both the welded and non-welded zones of high tensile strength steel that is used for natural gas transmission. The surface corrosion pattern of the welded zone of API 5L-X65 specimens for natural gas transmission showed general corrosion and narrow pitting, and the pitting was increased with load stress. Initially, the average relative electrode potential and the average relative current of the high tensile strength steel, used for natural gas transmission specimens, were decreased rapidly, and the average relative electrode potential was higher and the average relative current was lower in welded zone, compared to base metal. The average relative electrode potential was decreased with load stress, and the average relative current was somewhat increased by increasing the load stress. The corrosion rate was less in welded zone, compared to base metal, and the corrosion rate was decreased by increasing the load stress.

The effect of particle size on the edge notched disk (END) using particle flow code in three dimension

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.663-673
    • /
    • 2018
  • In this study, the effect of particle size on the cracks propagation and coalescence or cracking pattern of the edge notched disc specimens are investigated. Firstly, calibration of PFC3D was performed using Brazilian experimental test output. Then micro parameters were used to build edge notched disc specimen. The horizontal wall of the assembly is let to move downward with a standard low speed of 0.016 m/s. The numerical results show that the tensile cracks are dominant failure pattern for the modeled discs. These tensile cracks initiate from the pre-existing notch tip and propagate parallel to the loading direction then interact with the upper boundary of the modeled specimen. As the size of the balls (ball diameter) decrease the number of tensile cracks increase. The tensile fracture toughness of the samples also decreases as the particle size increases. Understanding the crack propagation and crack coalescence phenomena in brittle materials such as concretes and rocks is of paramount importance in the stability analyses for engineering structures such as rock slopes, underground structures and tunneling.

Effect of brittleness on the micromechanical damage and failure pattern of rock specimens

  • Imani, Mehrdad;Nejati, Hamid Reza;Goshtasbi, Kamran;Nazerigivi, Amin
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.535-547
    • /
    • 2022
  • Failure patterns of rock specimens represent valuable information about the mechanical properties and crack evolution mechanism of rock. Several kinds of research have been conducted regarding the failure mechanism of brittle material, however; the influence of brittleness on the failure mechanism of rock specimens has not been precisely considered. In the present study, experimental and numerical examinations have been made to evaluate the physical and mechanical phenomena associated with rock failure mechanisms through the uniaxial compression test. In the experimental part, Unconfined Compressive Strength (UCS) tests equipped with Acoustic Emission (AE) have been conducted on rock samples with three different brittleness. Then, the numerical models have been calibrated based on experimental test results for further investigation and comparing the micro-cracking process in experimental and numerical models. It can be perceived that the failure mode of specimens with high brittleness is tensile axial splitting, based on the experimental evidence of rock specimens with different brittleness. Also, the crack growth mechanism of the rock specimens with various brittleness using discrete element modeling in the numerical part suggested that the specimens with more brittleness contain more tensile fracture during the loading sequences.

Nonlinear Analysis of RC Slabs based on the Strain Decomposition Technique (변형률 분할기법을 이용한 철근콘크리트 슬래브의 비선형 유한요소해석)

  • Chung Won-Seok;Woo Young-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.433-439
    • /
    • 2005
  • This paper describes a reinforced concrete crack model, which utilizes a strain decomposition technique. The strain decomposition technique enables the explicit inclusion of physical behavior across the cracked concrete surface such as aggregate interlock and dowel action rather than intuitively defining the shear retention factor. The proposed concrete crack model is integrated into the commercial finite element software ABAQUS shell elements through a user-supplied material subroutine. The FE results have been compared to experimental results reported by other researchers. The proposed bridge FE model is capable of predicting the initial cracking load level, the ultimate load capacity, and the crack pattern with good accuracy.

  • PDF

The Properties of Breakdown and Test for Resistance to Cracking of Power Cable for PL Countermeasure (PL법 대응을 위한 전력케이블의 열 충격 및 절연파괴 특성)

  • Kim, Young-Seok;Shong, Kil-Mok;Kim, Sun-Gu
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.349-352
    • /
    • 2007
  • It is impossible to database(DB) the patterns of cable events and cause analysis of faulted cable because the product liability(PL) law have been enforced in Korea, since 2002. In additions, simulation and pattern of cable events are needed for DB system under accelerated deterioration. In this paper, we tested for resistance to nicking of cable below the 22.9kV class due to thermal stresses. This method of exam is following IEC 60811-3-1(Common test methods for insulating and sheathing materials of electric cables). First of all, set the cable in the thermal stress instrument, temperature changed from -20 degree to 120 degree. After thermal stress, we observed a surface crack of cable through microscope and carried out AC withstand voltage test.

  • PDF

Bond Strength Evaluation of Epoxy-Coated Reinforcement using Nonlinear Finite Element Analysis (비선형 유한요소법에 의한 에폭시 피막된 철근의 부착에 관한 연구)

  • 최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.65-68
    • /
    • 1991
  • Finite element analysis is used to study the role of interfacial properties on the bond strength of reinforcing steel to concrete. Specifically, the role played by epoxy coatings on the failure of standard beam-end specimens is explored. Experimental results show that epoxy coatings reduce bond strength, but that the effect is dependent on the bar size and the deformation pattern. The finite element model for the beam-end specimen includes representations for the deformed steel bar, the concrete, and the interfacial material. The interface elements can be varied to match the stiffness and friction properties of the interfacial material. Cracking within the concrete is represented using Hillerborg's ficticious crack model. The model is used to study important aspects or behavior observed in the tests and to provide an explanation for the effect of the various test parameters.

  • PDF

Behavior and crack development of fiber-reinforced concrete spandrel beams under combined loading: an experimental study

  • Ibraheema, Omer Farouk;Abu Bakar, B.H.;Joharib, I.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.1-17
    • /
    • 2015
  • An experimental investigation is conducted to examine the behavior and cracking of steel fiberre-inforced concrete spandrel L-shaped beams subjected to combined torsion, bending, and shear. The experimental program includes 12 medium-sized L-shaped spandrel beams organized into two groups, namely, specimens with longitudinal reinforcing bars, and specimens with bars and stirrups. All cases are examined with 0%, 1%, and 1.5% steel fiber volume fractions and tested under two different loading eccentricities. Test results indicate that the torque to shear ratio has a significant effect on the crack pattern developed in the beams. The strain on concrete surface follows the crack width value, and the addition of steel fibers reduces the strain. Fibrous concrete beams exhibited improved overall torsional performance compared with the corresponding non-fibrous control beams, particularly the beams tested under high eccentricity.

Numerical approach to fracture behavior of CFRP/concrete bonded interfaces

  • Lin, Hai X.;Lu, Jian Y.;Xu, Bing
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.291-295
    • /
    • 2017
  • Tests on the fracture behavior of CFRP-concrete composite bonded interfaces have been extensively carried out. In this study, a progressive damage model is employed to simulate the fracture behaviors. The crack nucleation, propagation and more other details can be captured by these models. The numerical results indicate the fracture patterns seem to depend on the relative magnitudes of the interface cohesive strength and concrete tensile strength. The fracture pattern transits from the predominated adhesive-concrete interface debonding to the dominated concrete cohesive cracking as the interface cohesive strength changes from lower than concrete tensile strength to higher than that. The numerical results have an agreement with the experimental results.

Fracture Analysis of Hole Flanging Process for High Strength Steel Sheets (고강도 열연판재의 홀 플랜정시 파단특성연구)

  • 김정운;김봉준;문영훈
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.465-470
    • /
    • 2001
  • Hole flanging experiments are performed on flat circular plates with a hole in the center and the flangeability and fracture behaviors of TRIP steels and ferrite-Bainite duplex steels were examined. In the hole flanging, deformation by lip and petalling occurs when plates are struck by punches of various shapes and high circumferential strains induced in the target material cause radial cracking and the subsequent rotation of the affected plate material in a number of symmetric petals. In all cases, failure of the plate was due to lip fracture that results from multiple localized neckings that take place around the hole periphery where straining is most severe and a somewhat regular pattern was observed in a fracture shape. The neck characteristics in flange formation and the transition from the lip to petal mode at which fracture occurs were compared with two materials.

  • PDF

A Study on the Fabrication of Prototype Ultrasonic Machine Tool and It's Experimental Machining (실험용 초음파 가공기의 제작 및 가공실험에 관한 연구)

  • 김종광;서용위
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.930-933
    • /
    • 2000
  • In this report experimental ultrasonic machine system has been fabricated and experimental machining has been performed using glass as a workpiece material. As grit size increases, material removal rate(MRR) was observed to be increased at decreased applied tool pressure on the workpiece, however at the higher applied pressure above $2-4\;kg/cm^2$ for smaller grit size, the MRR was not increased. Also better surface roughness was obtained for smaller grit size. Microchipping was observed from the microscopic examination and the pattern is similar to the iso-stress field where cracking is considered to be initiated near the surface.

  • PDF