• Title/Summary/Keyword: cracking model

Search Result 618, Processing Time 0.035 seconds

Definition of Digital Twin Models for Prediction of Future Performance of Bridges (교량의 장기성능 예측을 위한 디지털 트윈모델 정의)

  • Shim, Chang-Su;Jeon, Chi Ho;Kang, Hwi Rang;Dang, Ngoc Son;Lon, Sokanya
    • Journal of KIBIM
    • /
    • v.8 no.4
    • /
    • pp.13-22
    • /
    • 2018
  • Future performance prediction of bridges is challenging task for structural engineers. Well-organized information from design, construction and operation stages is essential for the assessment of structures. Digital twin model is a new concept to realize more reliable data platform for management of infrastructures. Damage history including degradation of material, cracking, corrosion, etc. needs to be accumulated in the digital model. The digital model is linked to the analysis model for the assessment of structural performance considering changed mechanical properties of structural components. In this paper, initial definition digital twin model of a PSC-I girder bridge is proposed.

Concrete Crack Detection and Visualization Method Using CNN Model (CNN 모델을 활용한 콘크리트 균열 검출 및 시각화 방법)

  • Choi, Ju-hee;Kim, Young-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.73-74
    • /
    • 2022
  • Concrete structures occupy the largest proportion of modern infrastructure, and concrete structures often have cracking problems. Existing concrete crack diagnosis methods have limitations in crack evaluation because they rely on expert visual inspection. Therefore, in this study, we design a deep learning model that detects, visualizes, and outputs cracks on the surface of RC structures based on image data by using a CNN (Convolution Neural Networks) model that can process two- and three-dimensional data such as video and image data. do. An experimental study was conducted on an algorithm to automatically detect concrete cracks and visualize them using a CNN model. For the three deep learning models used for algorithm learning in this study, the concrete crack prediction accuracy satisfies 90%, and in particular, the 'InceptionV3'-based CNN model showed the highest accuracy. In the case of the crack detection visualization model, it showed high crack detection prediction accuracy of more than 95% on average for data with crack width of 0.2 mm or more.

  • PDF

Microplane Model for RC Planar Members in Tension-Compression (인장-압축상태의 철근콘크리트 면 부재를 위한 미소면 모델)

  • 박홍근;김학준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.279-284
    • /
    • 2000
  • The existing microplane models for concrete ust three-dimensional spherical microplanes even in the analyses for two-dimensional members. Also, they can not describe accurately the post-cracking behavior of reinforced concrete in tension-compression. In this study, a new microplane model that is appropriate for the analyses of reinforced concrete planar members was developed to complement these disadvantages of the existing models. The proposed microplane model uses disk microplanes instead of the existing spherical ones. This new model is effective in numerical analysis because it uses less number of microplanes and two-dimensional stresses. Also, in this microplane model a concept of strain boundary was introduced to describe compressive behavior of reinforced concrete in tension-compression.

  • PDF

Drawing Strain Distribution Model for the Two-Pass Drawing Process (2단 튜브인발 공정시 인발변형률 배분모델 재발)

  • Lee D. H;Chung U. C;Moon Y. H
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.671-677
    • /
    • 2004
  • For the large reduction in tube cross section, the tube drawing process is usually performed by two successive passes, so called first drawing and second drawing. In multi-pass drawing process, the reduction balance is important to prevent drawing cracks. Therefore in this study, the model for uniform reduction distribution in two-pass drawing process has been developed on the basis of cross sectional variation of drawn tube. For the given product geometry the model provides optimal diameter and thickness that can evenly distribute drawing reductions. The capability of model is well confirmed by finite element analysis of tube drawing process. Criteria curves at various limit strains to determine whether the drawn tube would fail during drawing process are also proposed by using newly developed model.

Modelling the dynamic response and failure modes of reinforced concrete structures subjected to blast and impact loading

  • Ngo, Tuan;Mendis, Priyan
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.269-282
    • /
    • 2009
  • Responding to the threat of terrorist attacks around the world, numerous studies have been conducted to search for new methods of vulnerability assessment and protective technologies for critical infrastructure under extreme bomb blasts or high velocity impacts. In this paper, a two-dimensional behavioral rate dependent lattice model (RDLM) capable of analyzing reinforced concrete members subjected to blast and impact loading is presented. The model inherently takes into account several major influencing factors: the progressive cracking of concrete in tension, the inelastic response in compression, the yielding of reinforcing steel, and strain rate sensitivity of both concrete and steel. A computer code using the explicit algorithm was developed based on the proposed lattice model. The explicit code along with the proposed numerical model was validated using experimental test results from the Woomera blast trial.

Verification and application of beam-particle model for simulating progressive failure in particulate composites

  • Xing, Jibo;Yu, Liangqun;Jiang, Jianjing
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.273-283
    • /
    • 1999
  • Two physical experiments are performed to verify the effectiveness of beam-particle model for simulating the progressive failure of particulate composites such as sandstone and concrete. In the numerical model, the material is schematized at the meso-level as an assembly of discrete, interacting particles which are linked through a network of brittle breaking beams. The uniaxial compressive tests of cubic and parallelepipedal specimens made of carbon steel rod assembly which are glued together by a mixture are represented. The crack patterns and load-displacement response observed in the experiments are in good agreement with the numerical results. In the application respect of beam-particle model to the particulate composites, the influence of defects, particle arrangement and boundary conditions on crack propagation is approached, and the correlation existing between the cracking evolution and the level of loads imposed on the specimen is characterized by fractal dimensions.

Shear strength of full-scale steel fibre-reinforced concrete beams without stirrups

  • Spinella, Nino
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.365-382
    • /
    • 2013
  • Although shear reinforcement in beams typically consists of steel bars bent in the form of stirrups or hoops, the addition of deformed steel fibres to the concrete has been shown to enhance shear resistance and ductility in reinforced concrete beams. This paper presents a model that can be used to predict the shear strength of fibrous concrete rectangular members without stirrups. The model is an extension of the plasticity-based crack sliding model originally developed for plain concrete beams. The crack sliding model has been improved in order to take into account several aspects: the arch effect for deep beams, the post-cracking tensile strength of steel fibre reinforced concrete and its ability to control sliding along shear cracks, and the mitigation of the shear size effect due to presence of fibres. The results obtained by the model have been validated by a large set of experimental tests taken from literature, compared with several models proposed in literature, and numerical analyses are carried out showing the influence of fibres on the beam failure mode.

Progressive Fracture Analyses of Concrete by Finite Element Methods (유한요소법에 의한 콘크리트의 진행성 파괴해석)

  • 송하원
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.1
    • /
    • pp.145-153
    • /
    • 1996
  • The fracture process zone in concrete is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important roles. The toughness due to bridging is dominant compared to toughness induced by microcracking, so that the bridging is dominani: mechanism governing the fracture process of concrete. Fracture mechanics does work for concrete provided that the fracture process zone is being considered, so that the development of model for the fracture process zone is most important to describe fracture phenomena in concrete. In this paper the bridging zone, which is a part of extended rnacrocrack with stresses transmitted by aggregates in concrete, is modelled by a Dugdale-Barenblatt type model with linear tension-softening curve. Two finite element techniques are shown for the analysis of progressive cracking in concrete based on the discrete crack approach: one with crack element, the other without crack element. The advantage of the technique with crack element is that it dees not need to update the mesh topology to follow the progressive cracking. Numerical results by the techniques are demonstrated.

Study on a Prediction Model of the Tensile Strain Related to the Fatigue Cracking Performance of Asphalt Concrete Pavements Through Design of Experiments and Harmony Search Algorithm (실험계획법 및 하모니 검색 알고리즘을 이용한 아스팔트 포장체의 피로균열 공용성 관련 인장변형률 추정모델 연구)

  • Lee, Chang-Joon;Kim, Do-Wan;Mun, Sung-Ho;Yoo, Pyeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.11-17
    • /
    • 2012
  • This research describes how to predict a model of the tensile strain related to the fatigue cracking performance of several asphalt concrete structures through design of experiments(e.g., Response Surface Methodology) and harmony search(HS) algorithm. The axisymmetric analysis program of finite element method, which is the KICTPAVE, was used to determine the strain level at the interface layer between asphalt layer and lean concrete layer. Once the training database set of various strain levels was constructed under the several condition of layer stiffnesses and thicknesses in the asphalt concrete structures, the data set was trained through the HS algorithm in order to determine the regression coefficients defined based on a response surface methodology. Furthermore, the testing set, which was not used for the training procedure of HS algorithm, was also constructed in order to evaluate whether the regression coefficients of a prediction model can be appropriately applied for other cases in asphalt concrete structures.

Effect of hybrid fibers on flexural performance of reinforced SCC symmetric inclination beams

  • Zhang, Cong;Li, Zhihua;Ding, Yining
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.209-220
    • /
    • 2018
  • In order to evaluate the effect of hybrid fibers on the flexural performance of tunnel segment at room temperature, twelve reinforced self-consolidating concrete (SCC) symmetric inclination beams containing steel fiber, macro polypropylene fiber, micro polypropylene fiber, and their hybridizations were studied under combined loading of flexure and axial compression. The results indicate that the addition of mono steel fiber and hybrid fibers can enhance the ultimate bearing capacity and cracking behavior of tested beams. These improvements can be further enhanced along with increasing the content of steel fiber and macro PP fiber, but reduced with the increase of the reinforcement ratio of beams. The hybrid effect of steel fiber and macro PP fiber was the most obvious. However, the addition of micro PP fibers led to a degradation to the flexural performance of reinforced beams at room temperature. Meanwhile, the hybrid use of steel fiber and micro polypropylene fiber didn't present an obvious improvement to SCC beams. Compared to micro polypropylene fiber, the macro polypropylene fiber plays a more prominent role on affecting the structural behavior of SCC beams. A calculation method for ultimate bearing capacity of flexural SCC symmetric inclination beams at room temperature by taking appropriate effect of hybrid fibers into consideration was proposed. The prediction results using the proposed model are compared with the experimental data in this study and other literature. The results indicate that the proposed model can estimate the ultimate bearing capacity of SCC symmetric inclination beams containing hybrid fibers subjected to combined action of flexure and axial compression at room temperature.