• 제목/요약/키워드: cracking damage

검색결과 388건 처리시간 0.022초

철근콘크리트 실험체의 시스템 식별과 유한요소모델수정 (Finite Element Model Updating and System Identification of Reinforced Concrete Specimen)

  • 김학진;유은종;김호근;이상현;조승호;정란
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.647-652
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centro(NS, 1942) ground motion histories with different Peak Ground Acceleration(PGA) ranging from 0.06g to 0.50g. For model updating, flexural stiffness values of structural members(walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions(i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of inputs for updating(i.e. transfer function and natural frequencies). The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters(i.e. flexural stiffness values).

  • PDF

Influence of corrosive phenomena on bearing capacity of RC and PC beams

  • Malerba, Pier Giorgio;Sgambi, Luca;Ielmini, Diego;Gotti, Giordano
    • Advances in concrete construction
    • /
    • 제5권2호
    • /
    • pp.117-143
    • /
    • 2017
  • The attack of environmental aggressive agents progressively reduces the structural reliability of buildings and infrastructures and, in the worst exposition conditions, may even lead to their collapse in the long period. A change in the material and sectional characteristics of a structural element, due to the environmental damaging effects, changes its mechanical behaviour and varies both the internal stress redistribution and the kinematics through which it reaches its ultimate state. To identify such a behaviour, the evolution of both the damaging process and its mechanical consequences have to be taken into account. This paper presents a computational approach for the analysis of reinforced and prestressed concrete elements under sustained loading conditions and subjected to given damaging scenarios. The effects of the diffusion of aggressive agents, of the onset and development of the corrosion state in the reinforcement and the corresponding mechanical response are studied. As known, the corrosion on the reinforcing bars influences the damaging rate in the cracking pattern evolution; hence, the damage development and the mechanical behaviours are considered as coupled phenomena. The reliability of such an approach is validated in modelling the diffusion of the aggressive agents and the changes in the mechanical response of simple structural elements whose experimental behaviour is reported in Literature. A second set of analyses studies the effects of the corrosion of the tendons of a P.C. beam and explores potentially unexpected structural responses caused by corrosion under different aggressive exposition. The role of the different types and of the different positions of the damaging agents is discussed. In particular, it is shown how the collapse mode of the beam may switch from flexural to shear type, in case corrosion is caused by a localized chloride attack in the shear span.

형상기억복합재료에 대한 온라인 모니터링 시스템 개발 (Development of On-line Monitoring System for Shape Memory Alloy Composite)

  • 이진경;박영철;이민래;이동화;이규창
    • 비파괴검사학회지
    • /
    • 제23권1호
    • /
    • pp.7-13
    • /
    • 2003
  • 형상기억복합재료를 제조하기 위하여 핫프레스 방법을 이용하여 최적의 제조조건을 도출하였으며 냉간압연에 의해 기지재와 강화재의 계면접합을 강화하여 강도를 증가시켰다. 이러한 방법에 의해 제조된 형상기억복합재료에 대하여 외부 하중에 의한 손상정도와 균열의 발생을 감지하여 균열 발생 및 진전을 억제하는 온라인 모니터링 시스템을 개발하고자 한다. 이를 위하여 음향방출 신호의 파라미터를 이용하여 손상에 따른 최적의 AE 파라미터를 도출하였으며 가역시스템을 이용하여 형상기억합금을 가열함으로써 형상기억합금의 수축에 의한 복합재료 내부에 균열진전을 억제시키는 시스템을 개발하였다

철근콘크리트 실험체의 시스템 식별과 유한요소 모델 수정 (Finite Element Model Updating and System Identification of Reinforced Concrete Specimen)

  • 김학진;유은종;김호근;장극관;이상현;조승호;정란
    • 한국소음진동공학회논문집
    • /
    • 제18권7호
    • /
    • pp.725-731
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centre (NS, 1942) ground motion histories with different peak ground acceleration (PGA) ranging from 0.06 g to 0.50 g. For model updating, flexural stiffness values of structural members (walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions (i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of Inputs for updating (j.e. transfer function and natural frequencies) The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters (i.e. flexural stiffness values).

Shock absorption of concrete liquid storage tank with different kinds of isolation measures

  • Jing, Wei;Chen, Peng;Song, Yu
    • Earthquakes and Structures
    • /
    • 제18권4호
    • /
    • pp.467-480
    • /
    • 2020
  • Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.

예방적 유지보수 공법의 현장 적용성능 평가 연구 (Field Performance Evaluation of Preventive Maintenance Methods)

  • 이상염
    • 한국도로학회논문집
    • /
    • 제19권2호
    • /
    • pp.103-112
    • /
    • 2017
  • PURPOSES : In this study, field performance evaluation of crack treatment of pavement and the feasibility of surface treatment of pavement are presented. The performance and cost of preventive maintenance methods have been previously verified, and the methods are being used in many developed countries and cities. However, the performance and cost of the system have not been verified in domestic, field applications. Therefore, in order to improve performance, the field performance is evaluated, and a reasonable cost is proposed. METHODS : Visual Inspection was conducted to evaluate the field application and performance of the preventive maintenance method. In addition, the PCI index was calculated from the results of visual inspection of the application area of the surface treatment method, and the performance life of each method was predicted. For the economic evaluation, life cycle cost analysis was performed using the life cycle cost analysis program. RESULTS :In order to evaluate and quantify the field performance of crack repair material, the residue condition of the pavement surface after crack treatment, rather than the performance of the material, is evaluated. In addition, the crack resistance and performance life of surface treatment methods are evaluated. The cost of currently available treatment methods are compared to the common pavement cut and overlay method, and it is determined that the preventive method is not economical based on life cycle cost analysis. CONCLUSIONS :Because of the characteristics of cracking, it is necessary to conduct the evaluation of currently applied methods and the analysis of the cause of damage, by visual inspection. Moreover, in order to evaluate the performance and economic suitability of the currently applied surface treatment methods, it is necessary to acquire information on application sections by monitoring their long-term conditions and performance.

나선철근으로 횡구속된 정사각형 RC 기둥의 내진성능 (Seismic Performance of Square RC Column Confined with Spirals)

  • 고성현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권5호
    • /
    • pp.88-97
    • /
    • 2012
  • 본 연구에서는 비내진 교각의 내진성능과 휨-전단 거동을 파악하고자 형상비 4.5인 정사각형의 중실 및 중공단면 철근콘크리트 교각실험체를 제작하여 일정한 축력하에서 변위비 등급을 증가시켜 가면서 횡하중을 가력하는 실험을 수행하였다. 본 연구는 철근콘크리트 교각의 한정연성 내진설계를 위한 실험적 기초자료의 제공과 함께 성능단계별 교각성능 및 손상평가를 위한 정량적 수치와 경향을 제공하기 위한 것이며, 파괴거동, 극한변위, 극한드리프트비율, 변위연성도, 응답수정계수, 등가점성감쇠비, 잔류변형지수, 유효강성, 철근 변형률 등의 주요 내진성능 인자들에 대한 분석결과와 비선형 해석 결과를 나타내었다.

포르말린과 중성포르말린 약욕한 어류의 Formaldehyde 잔존량 측정과 병리학적 관찰 (Determination of formaldehyde residue and histopathological observation in formalin and neutral-formalin treated Korean rockfish(Sebastes schlegeli))

  • 조재권;양한춘
    • 한국어병학회지
    • /
    • 제9권2호
    • /
    • pp.157-168
    • /
    • 1996
  • 이 실험에서는 조피볼락을 대상으로 중성 formalin과 formalin으로 약욕하여 잔존량과 잔존기간 및 병리 조직학적 변화를 관찰하고 온도가 미치는 영향에 대해서 알아보았다. formalin 과 중성 formalin의 잔존량은 $15^{\circ}C$일 때 약욕 직후 약간의 차이를 제외하고는 별다른 차이를 보이지 않았다. 잔존기간은 수온 $15^{\circ}C$$25^{\circ}C$은 조건에서 각각 72 hr과 24 hr으로 온도의 영향을 많이 받는 것으로 나타났다. 어체에 미치는 독성은 중성 formalin보다 formalin이 강하게 나타나고 수온과 농도가 증가 할수록 조직에 미치는 영향이 심해졌다. formalin 약욕으로 인하여 아가미 조직에서는 부종과 상피세포의 박리, 뒤틀림, 괴사증상이 그리고 간에서는 부종과 핵농축, 공포화 현상이 나타나고 신장에서는 수증성 퇴행적 병변과 세뇨관 상피세포의 과립화 중상, 괴사가 일어나고 피부에서는 점액 세포의 증가와 표피의 괴사 및 피하조직과 진피층의 균열이 나타났다.

  • PDF

Effect of soil in controlling the seismic response of three-dimensional PBPD high-rise concrete structures

  • Mortezaie, Hamid;Rezaie, Freydoon
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.217-227
    • /
    • 2018
  • In the last decades, valuable results have been reported regarding conventional passive, active, semi-active, and hybrid structural control systems on two-dimensional and a few three-dimensional shear buildings. In this research, using a three-dimensional finite element model of high-rise concrete structures, designed by performance based plastic design method, it was attempted to construct a relatively close to reality model of concrete structures equipped with Tuned Mass Damper (TMD) by considering the effect of soil-structure interaction (SSI), torsion effect, hysteresis behavior and cracking effect of concrete. In contrast to previous studies which have focused mainly on linearly designed structures, in this study, using performance-based plastic design (PBPD) design approach, nonlinear behavior of the structures was considered from the beginning of the design stage. Inelastic time history analysis on a detailed model of twenty-story concrete structure was performed under a far-field ground motion record set. The seismic responses of the structure by considering SSI effect are studied by eight main objective functions that are related to the performance of the structure, containing: lateral displacement, acceleration, inter-story drift, plastic energy dissipation, shear force, number of plastic hinges, local plastic energy and rotation of plastic hinges. The tuning problem of TMD based on tuned mass spectra is set by considering five of the eight previously described functions. Results reveal that the structural damage distribution range is retracted and inter-story drift distribution in height of the structure is more uniform. It is strongly suggested to consider the effect of SSI in structural design and analysis.

나선철근 간격에 따른 원형 RC 기둥의 변위연성도 (Displacement Ductility of Circular RC Column According to the Spacing of Spirals)

  • 고성현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권2호
    • /
    • pp.71-82
    • /
    • 2013
  • 형상비 4.5인 축소모형 원형기둥 실험체 8개를 제작하여 일정한 축력 하에서 반복횡하중을 가력하는 실험을 수행하였다. 실험체의 주요변수는 횡방향철근비, 축방향철근비 (2.017%, 3.161%), 축력비 (0, 0.07, 0.15)이다. 모든 실험체의 횡방향 나선철근 체적비는 소성힌지 구간에서 0.3352~0.8938%의 값을 갖는다. 이 값은 도로교설계기준에서 요구하는 최소 심부구속철근 요구량의 39.7~122.3%에 해당하며, 이는 내진설계가 되지 않은 기존 교각이나 내진설계개념으로 설계되는 교각을 나타낸다. 본 연구의 최종목적은 실험적 기초자료의 제공과 함께 성능단계별 균열, 철근의 항복, 파단 등 정량적 수치와 경향을 제공하기 위한 것이다. 본 논문에서는 실험결과를 통해 분석된 실험변수에 따른 교각의 파괴거동, 강도저감거동, 변위연성도에 대해 중점적으로 기술하였다.