• Title/Summary/Keyword: cracking (fracturing)

Search Result 7, Processing Time 0.033 seconds

Study on EEC and SSC of the Electric Resistance Welded Linepipe Steel

  • Kim, Wan Keun;Koh, Seong Ung;Yang, Boo Young;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.96-102
    • /
    • 2007
  • The resistance of the linepipe steel to hydrogen-induced cracking (HIC) and sulfide stress cracking (SSC) is very important for steel to be used in sour oil/gas environments. Welding of steels is necessary to the construction of pipe-line transporting oil/gas. In this study, HIC and SSC resistance of an electric resistance welded (ERW) steel plate which belongs to API X70 grade was evaluated by using NACE TM0284-96A and NACE TM0177-96A methods. HIC and SSC fracturing behavior was investigated by observing fractured surfaces using optical microscopy (OM) and scanning electron microscopy (SEM). It was discussed in terms of metallurgical parameters such as the distribution of primary microstructure, second phases and inclusions. Results showed that the weld joint of ERW steel is more sensitive than base metal to HIC and SSC. This is due to difference in the contribution of metallurgical parameters to HIC and SSC nucleation and propagation.

Nonlinear analysis of reinforced concrete beam elements subject to cyclical combined actions of torsion, biaxial flexure and axial forces

  • Cocchi, Gian Michele;Tiriaca, Paolo
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.829-862
    • /
    • 2004
  • This paper presents a method for the nonlinear analysis of beam elements subjected to the cyclical combined actions of torsion, biaxial flexure and axial forces based on an extension of the disturbed compression field (DSFM). The theoretical model is based on a hybrid formulation between the full rotation of the cracks model and the fixed direction of the cracking model. The described formulation, which treats cracked concrete as an orthotropic material, includes a new approach for the evaluation of the re-orientation of both the compression field and the deformation field by removing the restriction of their coincidence. A new equation of congruence permits evaluating the deformation of the middle line. The problem consists in the solution of coupled nonlinear simultaneous equations expressing equilibrium, congruence and the constitutive laws. The proposed method makes it possible to determine the deformations of the beam element according to the external stresses applied.

Reliability Design of the Hinge Kit System in Common Refrigerator Under Repetitive Load (상용 냉장고에서 반복 하중을 받는 힌지 키트 시스템(HKS)의 신뢰성 설계 연구)

  • Woo, Seong-woo;Lee, Jongkil
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.312-324
    • /
    • 2008
  • To improve the newly designed HKS(hinge kit system) in common refrigerators, it was investigated the new robust methodologies. There were the study of failure modes, mechanisms in the marketplace, and the design parameters of HKS with various improvements using accelerated life testing. Based on the claimed marketplace product returns and 1st ALT reproduction, the fracturing and cracking occur in the housing of the HKS. The missing design parameters of the failed HKS in the design phase of the refrigerator was the housing hinge kit structure. The corrective action plans are the modifications of the housing hinge kit structure from the open supporting to all supporting structure. Based on 2nd ALTs, the fracturing and cracking occur in the torsion shaft. The missing design parameter was the roundness of torsion shaft. After a sequence of ALT testing, the levels of the missing design parameters were setup. The yearly failure rate and B1 life of the redesigned HKS, based on the results of ALT, were over 0.01 percent and 10 years, respectively. The parameter design through the inspection of the failed product, load analysis, and three rounds of ALT, was very effective in the new robust design methodologies of the mechanical system and this method can be applied to other design system.

Experimental study on all-bolted joint in modularized prefabricated steel structure

  • Wu, Zhanjing;Tao, Zhong;Liu, Bei;Zuo, Heng
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.613-620
    • /
    • 2020
  • The research study is focuses on a form of all-bolted joint with the external ring stiffening plate in the prefabricated steel structure. The components are bolted at site after being fabricated in the factory. Six specimens were tested under cyclic loading, and the effects of column axial compression ratio, concrete-filled column, beam flange sub plate, beam web angle cleats, and spliced column on the failure mode, hysteretic behavior and ductility of the joints were analyzed. The results shown that the proposed all-bolted joint with external ring stiffening plate performed high bearing capability, stable inflexibility degradation, high ductility and plump hysteretic curve. The primary failure modes were bucking at beam end, cracking at the variable section of the external ring stiffening plate, and finally welds fracturing between external ring stiffening plate and column wall. The bearing capability of the joints reduced with the axial compression ratio increased. The use of concrete-filled steel tube column can increase the bearing capability of joints. The existence of the beam flange sub plate, and beam web angle cleat improves the energy dissipation, ductility, bearing capacity and original rigidity of the joint, but also increase the stress concentration at the variable section of the external reinforcing ring plate. The proposed joints with spliced column also performed desirable integrity, large bearing capacity, initial stiffness and energy dissipation capacity for engineering application by reasonable design.

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF

A Novel Method for In Situ Stress Measurement by Cryogenic Thermal Cracking - Concept Theory and Numerical Simulation (저온 열균열 현상을 이용한 초기 응력 측정법 - 개념, 이론 및 수치해석)

  • Ryu, Chang-Ha;Ryu, Dong-Woo;Choi, Byung-Hee;Synn, Dong-Ho;Loui, John P.
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.343-354
    • /
    • 2008
  • A new method is suggested herein to measure the virgin earth stresses by means of a borehole. This novel concept is basically a combination of borehole stress relieving and borehole fracturing techniques. The destressing of the borehole is achieved by means of inducing thermal tensile stresses at the borehole periphery by using a cryogenic fluid such as Liquid Nitrogen($LN_2$). The borehole wall eventually develops fractures when the induced thermal stresses exceed the existing compressive stresses at the borehole periphery in addition to the tensile strength of the rock. The above concept is theoretically analyzed for its potential applicability to interpret in situ stress levels from the tensile fracture stresses and the corresponding borehole wall temperatures. Coupled thermo-mechanical numerical simulations are also conducted using FLAC3D, with thermal option, to check the validity of the proposed techniques. From the preliminary theoretical and numerical analysis, the method suggested for the measurement of in situ stresses appears to be capable of accurate estimation of the virgin stresses by monitoring tensile crack formation at a borehole wall and recording the wall temperatures at the time of crack initiation.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.