• Title/Summary/Keyword: cracked concrete structures

Search Result 138, Processing Time 0.028 seconds

Nonlinear Dynamic Analysis of Reinforced Concrete Containment Panel (철근콘크리트 격납 패널의 비선형 동적해석)

  • 박재근;김태훈;신현목
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.591-598
    • /
    • 2003
  • The purpose of this study is to investigate the seismic behavior of reinforced concrete Containment Panel subjected to earthquake motions. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), was used for the analysis of reinforced concrete structures. A 4-node flat shell element with drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. Solution of the equations of motion is obtained by numerical integration using Hither-Hughes-Taylor(HHT) algorithm. The proposed numerical method for the seismic analysis of reinforced concrete Containment panel is verified by comparison of analysis results with reliable experimental results.

  • PDF

Seismic Analysis of Reinforced Concrete Shear Wall (철근콘크리트 전단벽의 지진해석)

  • 김태훈;박지홍;박재근;최강룡;신현목
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.180-187
    • /
    • 2003
  • The purpose of this study is to investigate the seismic behavior of reinforced concrete shear wall subjected to earthquake motions. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), was used for the analysis of reinforced concrete structures. A 4-node flat shell element with drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. Solution of the equations of motion is obtained by numerical integration using Hither-Hughes-Taylor(HHT) algorithm. The proposed numerical method for the seismic analysis of reinforced concrete shear wall is verified by comparison of analysis results with reliable experimental results.

  • PDF

Bond strength modeling for corroded reinforcement in reinforced concrete

  • Wang, Xiaohui;Liu, Xila
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.863-878
    • /
    • 2004
  • Steel corrosion in reinforced concrete structures leads to concrete cover cracking, reduction of bond strength, and reduction of steel cross section. Among theses consequences mentioned, reduction of bond strength between reinforcement and concrete is of great importance to study the behaviour of RC members with corroded reinforcement. In this paper, firstly, an analytical model based on smeared cracking and average stress-strain relationship of concrete in tension is proposed to evaluate the maximum bursting pressure development in the cover concrete for noncorroded bar. Secondly, the internal pressure caused by the expansion of the corrosion products is evaluated by treating the cracked concrete as an orthotropic material. Finally, bond strength for corroded reinforcing bar is calculated and compared with test results.

Investigating the negative tension stiffening effect of reinforced concrete

  • Zanuy, Carlos
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.189-211
    • /
    • 2010
  • The behaviour of a reinforced concrete tension member is governed by the contribution of concrete between cracks, tension stiffening effect. Under highly repeated loading, this contribution is progressively reduced and the member response approximates that given by the fully cracked member. When focusing on the unloaded state, experiments show deformations larger than those of the naked reinforcement. This has been referred to as negative tension stiffening and is due to the fact that concrete carries compressive stresses along the crack spacing, even thought the tie is subjected to an external tensile force. In this paper a cycle-dependent approach is presented to reproduce the behaviour of the axially loaded tension member, paying attention to the negative tension stiffening contribution. The interaction of cyclic bond degradation and time-dependent effects of concrete is investigated. Finally, some practical diagrams are given to account for the negative tension stiffening effect in reinforced concrete elements.

Computational methodology to determine the strength of reinforced concrete joint

  • Sasmal, Saptarshi;Vishnu Pradeesh, L.;Devi, A. Kanchana;Ramanjaneyulu, K.
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.61-77
    • /
    • 2016
  • Seismic performance of structures depends on the force flow mechanism inside the structure. Discontinuity regions, like beam-column joints, are often affected during earthquake event due to the complex and discontinuous load paths. The evaluation of shear strength and identification of failure mode of the joint region are helpful to (i) define the strength hierarchy of the beam-column sub-assemblage, (ii) quantify the influence of different parameters on the behaviour of beam-column joint and, (iii) develop suitable and adequate strengthening scheme for the joints, if required, to obtain the desired strength hierarchy. In view of this, it is very important to estimate the joint shear strength and identify the failure modes of the joint region as it is the most critical part in any beam-column sub-assemblage. One of the most effective models is softened strut and tie model which was developed by incorporating force equilibrium, strain compatibility and constitutive laws of cracked reinforced concrete. In this study, softened strut and tie model, which incorporates force equilibrium equations, compatibility conditions and material constitutive relation of the cracked concrete, are used to simulate the shear strength behaviour and to identify failure mechanisms of the beam-column joints. The observations of the present study will be helpful to arrive at the design strategy of the joints to ensure the desired failure mechanism and strength hierarchy to achieve sustainability of structural systems under seismic loading.

An analytical-numerical procedure for cracking and time-dependent effects in continuous composite beams under service load

  • Chaudhary, Sandeep;Pendharkar, Umesh;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • v.7 no.3
    • /
    • pp.219-240
    • /
    • 2007
  • An analytical-numerical procedure has been presented in this paper to take into account the nonlinear effects of concrete cracking and time-dependent effects of creep and shrinkage in the concrete portion of the continuous composite beams under service load. The procedure is analytical at the element level and numerical at the structural level. The cracked span length beam element consisting of uncracked zone in middle and cracked zones near the ends has been proposed to reduce the computational effort. The progressive nature of cracking of concrete has been taken into account by division of the time into a number of time intervals. Closed form expressions for stiffness matrix, load vector, crack lengths and mid-span deflection of the beam element have been presented in order to reduce the computational effort and bookkeeping. The procedure has been validated by comparison with the experimental and analytical results reported elsewhere and with FEM. The procedure can be readily extended for the analysis of composite building frames where saving in computational effort would be very considerable.

Seismic evaluation of cemented material dams -A case study of Tobetsu Dam in Japan

  • Arefian, Amir;Noorzad, Ali;Ghaemian, Mohsen;Hosseini, Abbas
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.717-733
    • /
    • 2016
  • Trapezoidal Cemented Sand and Gravel Dam, namely Trapezoid CSG, is a new type of dam. Due to lack of dynamic studies in the field of CSG dam, this research was performed to analyze Trapezoidal CSG dam using dynamic Finite element method with ABAQUS Software. To investigate possible earthquake-induced damages, fragility curves are plotted based on damage index, the length of the cracks created at the dam base and the area of cracked elements in the dam. The seismic analysis indicated that minimum and maximum tensions are generated in the heel and toe of the dam, respectively. According to the fragility curves, with increase in PGA, the possibility of the exceeding the defined limit state is increased. However, the rate of increment is significantly reduced after PGA=0.4 g. Also, the same result is achieved for the second limit state. The "area of cracked elements" is more conservative criterion than the "crack length at the dam base", especially at PGA<0.4 g. As conclusion, CSG dams, despite of being made of poor materials in comparison with concrete dams, show good resistance, and even in some situations, better performance than the weighted concrete dams.

A Nonlinear Finite Element Analysis to Study the Flexural Behavior of Reinforced Concrete Walls (철근콘크리트 벽체의 휨거동에 관한 비선형 유한요소해석)

  • Han Min Ki;Park Wan Shin;Han Byung Chan;Hwang Sun Kyoung;Choi Chang Sik;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.520-523
    • /
    • 2004
  • The finite element method(FEM) models were developed for the reinforced concrete flexural walls and analysed under constant axial and monotonic lateral load using ABAQUS. The major objective of the present study is to determine if the ABAQUS finite element program can be used to accurately model the post-cracked mode of failure in plastic regions of walls, and, if so, to develop practical failure criteria in the plastic range of the material response. The research comprises constitutive models to represent behavior of the materials that compose a wall on the basis of experimental data, development of techniques that are appropriate for analysis of reinforced concrete structures, verification, and calibration of the global model for reinforced concrete walls of increasing complexity. Results from the analyses of these FEM models offers significant insight into the flexural behavior of benchmark data.

  • PDF

Nonlinear Analysis of Nuclear Containment Wall Element using Standard 8-node Solid Element (표준 8절점 고체요소를 이용한 원전 격납건물 벽체요소의 비선형해석)

  • Lee Hong-Pyo;Choun Young-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.151-158
    • /
    • 2005
  • For the safety analysis of large structures such as nuclear containment buildings, we conventionally prefer to use analytical approach using finite element method rather than empirical test. Therefor, this paper is mainly focused to develop low-order solid finite element model with the elasto-plastic material model for the safety analysis of nuclear containment building. Drucker-Prager failure criteria in uncracked concrete and maximum tensile stress criteria in cracked concrete are used to model the constitutive behavior of concrete. The concrete material model takes into account the aspects of tensile strain, compression strength reduction of concrete and shear transfer to improve the accuracy of the finite element analysis. Finally, numerical simulation to compare the performance of the developed model with experimental results is employed. The numerical results in this study agree very well with the experimental data.

  • PDF

Bond and ductility: a theoretical study on the impact of construction details - part 2: structure-specific features

  • Zwicky, Daia
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.137-149
    • /
    • 2013
  • The first part of this two-part paper discussed some basic considerations on bond strength and its effect on strain localization and plastic deformation capacity of cracked structural concrete, and analytically evaluated the impacts of the hardening behavior of reinforcing steel and concrete quality on the basis of the Tension Chord Model. This second part assesses the impacts of the most frequently encountered construction details of existing concrete structures which may not satisfy current design code requirements: bar ribbing, bar spacing, and concrete cover thickness. It further evaluates the impacts of the additional structure-specific features bar diameter and crack spacing. It concludes with some considerations on the application of the findings in practice and an outlook on future research needs.