• Title/Summary/Keyword: cracked concrete structures

Search Result 138, Processing Time 0.026 seconds

Effect of Micro-Cracks on Chloride Ions Penetration of Concrete: Phonomenological Model (미세균열이 콘크리트의 염소이온 침투에 미치는 영향: 현상학적 모델)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • Over the past few decades, considerable numbers of studies on the durability of concrete have been carried out extensively. A lot of improvements have been achieved especially in both measuring techniques as well as modeling of ionic flows. However, the majority of these researches have been performed on sound uncracked concrete, although most of in-situ concrete structures have more or less micro-cracks. It is only recent approach that the attention has shifted towards the influence of cracks and crack width on the penetration of chloride into concrete. The penetration of chlorides into concrete through the cracks can make a significant harmful effect on reinforcement corrosion. On the other hand, a general acceptable crack width of 0.3 mm has been recognized for keeping the serviceability of concrete structures in accordance with a lot of codes. However, there seems to be rare established description to explain the critical crack width in terms of the durability of concrete. To make a bad situation worse, there is little agreement on critical crack width among a few of literatures for this issue. Critical crack width is still controversial problem. Nevertheless, since the critical crack width is important key for healthy assessment of concrete structures exposed to marine environment, it should be established. The objective of this study is to define a critical crack width. The critical crack width in this study is designed for a threshold crack width, which contributes to the first variation of chloride diffusion coefficient in responsive to the existence of cracks. A simple solution is formulated to realize the quantifiable parameter, chloride diffusion coefficient for only cracked zone excluding sound concrete. From the examination on the trend of chloride diffusion coefficient of only cracked zone for various crack widths, a critical crack width is founded out.

Experimental modal analysis of railway concrete sleepers with cracks

  • Real, J.I.;Sanchez, M.E.;Real, T.;Sanchez, F.J.;Zamorano, C.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.51-60
    • /
    • 2012
  • Concrete sleepers are essential components of the conventional railway. As support elements, sleepers are always subjective to a variety of time-dependent loads attributable to the train operations, either wheel or rail abnormalities. It has been observed that the sleepers may deteriorate due to these loads, inducing the formation of hairline cracks. There are two areas along the sleepers that are more prone to crack: the central and the rail seat sections. Several non-destructive methods have been developed to identify failures in structures. Health monitoring techniques are based on vibration responses measurements, which help engineers to identify the vibration-based damage or remotely monitor the sleeper health. In the present paper, the dynamic effects of the cracks in the vibration signatures of the railway pre-stressed concrete sleepers are investigated. The experimental modal analysis has been used to evaluate the modal bending changes in the vibration characteristics of the sleepers, differentiating between the central and the rail seat locations of the cracks. Modal parameters changes of the 'healthy' and cracked sleepers have been highlighted in terms of natural frequencies and modal damping. The paper concludes with a discussion of the most suitable failure indicator and it defines the vibration signatures of intact, central cracked and rail seat cracked sleepers.

Prediction of Shear Strength of Reinforced Concrete Deep Beams (철근콘크리트 깊은 보의 전단강도 예측)

  • Cheon Ju Hyun;Kim Tae Hoon;Lee Sang Cheol;Chung Young Soo;Lee Kwang Myong;Shin Hyun Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.532-535
    • /
    • 2004
  • This paper presents a nonlinear finite element analysis procedure for the prediction of shear strength of reinforced concrete deep beams. A computer program, named RCAHESTC(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile. compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The proposed numerical method for the prediction of shear strength of reinforced concrete deep beams is verified by comparison with the reliable experimental results.

  • PDF

Analytical Study on Hollow Reinforced Concrete Bridge Piers under Varying Axial Load (변동 축하중을 받는 중공 철근콘크리트 교각에 관한 해석적 연구)

  • Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.81-84
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of hollow reinforced concrete bridge piers under varying axial load. The role of the variable axial load is very important in the ductility, strength, stiffness, and energy dissipation. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The proposed numerical method for the inelastic behavior of hollow reinforced concrete bridge piers under varying axial load is verified by comparison with reliable experimental results.

  • PDF

Nonlinear Finite Element Analysis of Precast Segmental Prestressed Concrete Bridge Columns (조립식 프리스트레스트 콘크리트 교각의 비선형 유한요소해석)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.292-299
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge columns is verified by comparison with reliable experimental results.

  • PDF

Probabilistic service life of box culvert due to carbonation of concrete cover

  • Woo, Sang-Kyun;Chu, In-Yeop;Lee, Yun;Lee, Byung-Jae
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.517-525
    • /
    • 2021
  • More underground structures are increasingly being constructed such as box culverts for electric power transmission, and the life extension of these structures is very important. It is well known that the steel embedded in concrete is usually invulnerable to corrosion because the high alkalinity of the pore solution in concrete generates a thin protective oxide layer on the surface of the steel. Recent observations in the field and experimental evidence have shown that even steel in concrete can be corroded through the carbonation reaction of cover concrete. Carbonation-induced corrosion in concrete may often occur in a high carbon dioxide environment. In this study, the risk of carbonation of underground box culverts in Korea was evaluated by measuring the car¬bonation rate and concrete cover depth in the field. Then, the carbonation-free service life for the cover depth of the steel was calcu¬lated with in situ information and Monte Carlo simulation. Additionally, an accelerated carbonation test for a cracked beam specimen was performed, and the effect of a crack on the service life of a box culvert was numerically investigated with Monte Carlo simulation based on experimental results.

Reinforcement of RC Structures with External Post-Tensioning Method (외부 포스트텐셔닝공법에 의한 콘크리트 구조물의 보강사례 연구)

  • 정원용;김승익
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.387-392
    • /
    • 2002
  • In many years, post-tensioning method has been used for structural reinforcement of RC structures due to easy installation and good quality control. This study presents practical application results for the effectiveness of structural post-tensioning reinforcement of the FCM bridge girders, cement silos and building girders. For the FCM bridges deflected excessively at the end of girders, for cement silos cracked vertically at silo surface and for building girders deflected due to heavy load from roof, the external post-tensioning method was used for uplifting deflected girders and closing cracks with increasing resisting capacity of the structures. It was demonstrated that all the items were rehabilitated nearly to the initial construction status according to the field test results.

  • PDF

Development of Reinforced Concrete Shell Element with Drilling Rotational Stiffness (면내회전강성도를 갖는 철근콘크리트 쉘요소의 개발)

  • 김태훈;유영화;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.47-56
    • /
    • 1999
  • In this paper, a nonlinear finite element procedure is presented for the analysis of reinforced concrete shell structures. The 4-node quadrilateral flat shell finite element with drilling rotational stiffness is developed. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The steel reinforcement is assumed to be in a uniaxial stress state and to be a smeared in a layer. The proposed numerical method for nonlinear analysis of reinforce concrete shells will be verified by comparison with reliable experimental results.

Concrete stiffness matrices for membrane elements

  • Hsu, Thomas T.C.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.599-608
    • /
    • 1997
  • The concrete stiffness matrices of membrane elements used in the finite element analysis of wall-type structures are reviewed and discussed. The behavior of cracked reinforced concrete membrane elements is first described by summarizing the constitutive laws of concrete and steel established for the two softened truss models (the rotating-angle softened-truss model and the fixed-angle softened-truss model). These constitutive laws are then related to the concrete stiffness matrices of the two existing cracking models (the rotating-crack model and the fixed-crack model). In view of the weakness in the existing models, a general model of the matrix is proposed. This general matrix includes two Poisson ratios which are not clearly understood at present. It is proposed that all five material properties in the general matrix should be established by new biaxial tests of panels using proportional loading and strain-control procedures.

Predictions of Seismic Behavior of Reinforced Concrete Bridge Piers (철근콘크리트 교각의 지진응답 예측)

  • 김태훈;김운학;신현목
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.133-140
    • /
    • 2002
  • The purpose of this study is to investigate the seismic behavior of reinforced concrete bridge piers and to provide the data for developing improved seismic design criteria. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected. local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. The proposed numerical method for the prediction of seismic behavior for reinforced concrete bridge piers is veri fief by comparison with the reliable experimental results.

  • PDF