DOI QR코드

DOI QR Code

Effect of Micro-Cracks on Chloride Ions Penetration of Concrete: Phonomenological Model

미세균열이 콘크리트의 염소이온 침투에 미치는 영향: 현상학적 모델

  • Yoon, In-Seok (Microlab, Faculty of Civil Engineering and Geoscience)
  • 윤인석 (델프트공과대학 토목공학부)
  • Published : 2007.02.28

Abstract

Over the past few decades, considerable numbers of studies on the durability of concrete have been carried out extensively. A lot of improvements have been achieved especially in both measuring techniques as well as modeling of ionic flows. However, the majority of these researches have been performed on sound uncracked concrete, although most of in-situ concrete structures have more or less micro-cracks. It is only recent approach that the attention has shifted towards the influence of cracks and crack width on the penetration of chloride into concrete. The penetration of chlorides into concrete through the cracks can make a significant harmful effect on reinforcement corrosion. On the other hand, a general acceptable crack width of 0.3 mm has been recognized for keeping the serviceability of concrete structures in accordance with a lot of codes. However, there seems to be rare established description to explain the critical crack width in terms of the durability of concrete. To make a bad situation worse, there is little agreement on critical crack width among a few of literatures for this issue. Critical crack width is still controversial problem. Nevertheless, since the critical crack width is important key for healthy assessment of concrete structures exposed to marine environment, it should be established. The objective of this study is to define a critical crack width. The critical crack width in this study is designed for a threshold crack width, which contributes to the first variation of chloride diffusion coefficient in responsive to the existence of cracks. A simple solution is formulated to realize the quantifiable parameter, chloride diffusion coefficient for only cracked zone excluding sound concrete. From the examination on the trend of chloride diffusion coefficient of only cracked zone for various crack widths, a critical crack width is founded out.

지난 수년간 콘크리트의 염소이온 침투와 유관되어 실험 방법론 및 해석적 모델 기법의 개발에 많은 발전이 있어 왔다. 그러나 실제 콘크리트 구조물에는 다소의 균열이 존재하며 이는 장기 내구성에 큰 영향을 줄 수 있음에도 불구하고 대부분의 연구들은 비균열의 콘크리트를 대상으로 연구되어 온 문제점이 있었으며 균열이 존재하는 콘크리트의 염소이온 침투에 대한 연구는 매우 드문 실정이다. 염소이온 침투에 대한 균열폭의 임계치는 유지관리 차원에서 필요하지만, 대부분 콘크리트 코드는 사용성의 견지에서 허용 균열폭을 보편적인 값 0.3mm로 제안하고 있을 뿐, 염소이온 침투 및 내구성의 견지에서 임계 균열폭에 대한 규정도 부재한 실정이다. 이미 제안된 값도 연구자들마다 상이하여 논란의 여지가 있다. 본 연구는 임계 균열폭의 도출을 목적으로 균열이 콘크리트의 염소이온 침투에 미치는 영향을 고찰하였다. 실험적 방법으로 다양한 균열폭과 균열 깊이를 실험 변수로 하여 급속 염소이온 침투 실험 (RCMT)를 행하였다. 한편, 임계 균열폭이 갖는 공학적 의미를 설명하고자, 균열폭에 따른 염소이온 침투의 현상학적 모델이 제안되었다. 즉, 균열된 콘크리트는 3 구간으로 나누어지며 내부 안쪽으로 들어갈수록 확산자유 영역, 확산경화 영역, 순수 확산 영역의 3가지 구간이 존재한다. 이는 균열폭에 따른 염소이온 확산계수를 산출하기 위한 해석적 방법론의 개발에 이용될 수 있을 것으로 사료된다.

Keywords

References

  1. 윤인석, '물리화학적 메커니즘에 기인한 콘크리트의 염화물 흡착등온에 대한 모델링', 한국콘크리트학회 가을 학술발표회 논문집, 18권 2호, 2006, pp.537-540
  2. 윤인석, Ye Guang, Oguzhan Copuroglue, Erik Schlangen, and Klaas van Breugel, '해양성환경의 침지대콘크리트의 표면염소이온량 계산에 대한 이론적 접근방법', 한국콘크리트학회 봄 학술발표회 논문집, 18권 1호, 2006, pp.197-200
  3. 윤인석, Erik Schlangen, and Klaas van Breugel, '콘크리트 중의 염화물침투에 영향을 미치는 균열폭에 대한 고찰', 한국콘크리트학회 가을학술발표회 논문집, 18권 2호, 2006, pp.945-948
  4. Samaha, H. R. and Hover, K. C., 'Influencing of Microcracking on the Mass Transport Properties of Concrete', ACI Materials Journal, Vol.89, No.4, 1992, pp.416-424
  5. Rodriguez, O. G and Hooton, R. D., 'Influence of Cracks on Chloride Ingress into Concrete', ACI Material Journal, Vol.100, No.4, 2003, pp.120-126
  6. British Standards Institution, ENV 1991-1-1, BSI, London, 1992
  7. Federation Intemationale de la Preconstrainte, CEB-FIP Model Code, Thomas Telford, London, 1990
  8. Reinhardt, H. W., Sosoro, M., and Zhu, X., 'Cracked and Repaired Concrete Subjected to Fluid Penetration', Materials and Structures, Vol.31, No.205, 1998, pp.74-83 https://doi.org/10.1007/BF02486468
  9. Mivelaz, P., Estancheite des Tructures en Beton Arme, Fuites au Travers d'un Element Fissure, PhD Thesis, EPFL, No.153, 1996
  10. Schiessl, P., Admissible Crack Width in Reinforced Concrete Structures, Inter-Association Colloquium on the Behavior in Service of Concrete Structures, Preliminary Reports II, Liege, 1975, pp.739-755
  11. Li, C. Q., 'Initiation of chloride-Induced Reinforcement Corrosion in Concrete Structural Members-Prediction', ACI Structural Journal, Vol.99, No.2, 2002, pp.131-141
  12. Francois, R. and Arliguie, G, 'Effect of Microcracking and Cracking on the Development of Corrosion in Reinforced Concrete Members', Magazine of Concrete Research, Vol.51, No.2, 1999, pp.143-150 https://doi.org/10.1680/macr.1999.51.2.143
  13. Mohammed, T. U., Otsuki, N., Hisada M., and Shibata, T., 'Effect of Crack Width and Bar Types on Corrosion of Steel in Concrete', Journal of Materials Journal in Civil Engineering, ASCE, Vol.13, No.2, 2001, pp.194-201 https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(194)
  14. RILEM Report 12, Performance Criteria for Concrete Durability, J Kropp and H K. Hilsdorf(Eds.), E & FN SPON, London, 1995, pp.15-31
  15. Tang, L., Chloride Transport in Concrete - Measurement and Prediction, Division of Building Materials, Chalmers University of Technology, Gothenborg, Sweden, 1996, pp.21-85
  16. NT Build 492, Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-SteadyState Migration Experiment, NORDTEST, Finland, 1999
  17. Tongnazzi, C., Ollivier, J. P., Carcasses, M., and Torrenti, J. M., Couplage Fissuration-Degradation Chimique des Materiaux Cimentaires: Premiers Resultats sur les Proprietes de Transfert, Ouvrages, Geornareriaux et Interactions, Ch. Petit, G Pijaudier-Cahot and J. M. Reynouard (Eds.), Hermes, Paris, 1998, pp.69-84
  18. Yang, C. C. and J. K. Su, 'Approximate Migration Coefficient of Interfacial Transition Zone and the Effect of Aggregate Content on the Migration Coefficient of Mortar', Cement and Concrete Research, Vol.32, No.4, 2002, pp.1559-1565 https://doi.org/10.1016/S0008-8846(02)00832-3

Cited by

  1. Effect of Coating System to Prevent the Deterioration of Concrete Subjected to Compressive Stress vol.16, pp.3, 2012, https://doi.org/10.11112/jksmi.2012.16.3.023