• Title/Summary/Keyword: crack sensor

Search Result 186, Processing Time 0.028 seconds

A Study on the Measurement of Stress Intensity Factors for the Fatigue Crack Propagation (피로 균열 진전에 따른 응력확대계수 측정에 관한 연구)

  • Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.80-85
    • /
    • 2012
  • Fatigue cracks in structural components are the most common cause of structural failure when exposed to fatigue loading. In this respect, fatigue crack detection and structural health assessment are very important. Currently, various smart materials are used for detecting fatigue crack and measurement of SIFs(Stress Intensity Factors). So, this paper presented a measurement of SIFs using MFC(Micro Fiber Composite) sensor which is the one of the smart material. MFC sensor is more flexible, durable and reliable than other smart materials. The SIFs of Mode I(K I) as well as Mode II(K II) based on the piezoelectric constitutive law and fracture mechanics are calculated. In this study, the SIF values measured by MFC sensors are compared with the theoretical results.

Crack source location by acoustic emission monitoring method in RC strips during in-situ load test

  • Shokri, Tala;Nanni, Antonio
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.155-171
    • /
    • 2014
  • Various monitoring techniques are now available for structural health monitoring and Acoustic Emission (AE) is one of them. One of the major advantages of the AE technique is its capability to locate active cracks in structural members. AE crack locating approaches are affected by the signal attenuation and dispersion of elastic waves due to inhomogeneity and geometry of reinforced concrete (RC) members. In this paper, a novel technique is described based on signal processing and sensor arrangement to process multisensory AE data generated by the onset and propagation of cracks and is validated with experimental results from an in-situ load test. Considering the sources of uncertainty in the AE crack location process, a methodology is proposed to capture and locate events generated by cracks. In particular, the relationship between AE events and load is analyzed, and the feasibility of using the AE technique to evaluate the cracking behavior of two RC slab strips during loading to failure is studied.

Development of the Wireless-Diagnosis Smart Concrete using PZT for Damage (압전소자를 이용한 무선 손상자현 스마트 콘크리트의 개발)

  • Kim Ie-Sung;Lee Soo-Gon;Kim Wha-Jung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.416-421
    • /
    • 2005
  • Concrete are brittle materials and they are which come to brittle fracture rapidly by progress of cracks. Therefore, what the time for repairing the damage portion is understands importantly by such cracks. When they happened the glass pipe similar to concrete was used. Such a glass pipe can insert repair material in an inside, or can use it by switch. They are interested in the crack monitoring of structure using FM radio sensor and PZT sensor. In this study, the monitoring to a crack was studied using FM radio sensor and PZT sensor. Therefore, the purpose of this study is the fundamental research which detects damages of main members using the compound sensor which consisted of the radio sensors of resistance, PZT, and FM system.

  • PDF

Crack detection study for hydraulic concrete using PPP-BOTDA

  • Huang, Xiaofei;Yang, Meng;Feng, Longlong;Gu, Hao;Su, Huaizhi;Cui, Xinbo;Cao, Wenhan
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.75-83
    • /
    • 2017
  • Effectively monitoring the concrete cracks is an urgent question to be solved in the structural safety monitoring while cracks in hydraulic concrete structures are ubiquitous. In this paper, two experiments are designed based on the measuring principle of Pulse-Pre pump Brillouin Optical Time Domain Analysis (PPP-BOTDA) utilizing Brillouin optical fiber sensor to monitor concrete cracks. More specifically, "V" shaped optical fiber sensor is proposed to determine the position of the initial crack and the experiment illustrates that the concrete crack position can be located by the mutation position of optical fiber strain. Further, Brillouin distributed optical fiber sensor and preinstall cracks are set at different angles and loads until the optical fiber is fractured. Through the monitoring data, it can be concluded that the variation law of optical fiber strain can basically reflect the propagation trend of the cracks in hydraulic concrete structures.

Design and Implementation of the Slope-Crack Prediction System by Using Wireless Sensor Networks (무선 센서 네트워크를 이용한 상시 사면 균열 예측시스템의 설계 및 구현)

  • Lim, Hwa-Jung;Tscha, Yeong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.186-192
    • /
    • 2009
  • With the proliferation of ubiquitous computing we have witnessed the wide application of many wireless sensor networks into various areas because of easy installations and low-cost merits. The commercially available equipments for monitoring and predicting cracks in the mountain regions are still burden for us in terms of the installation complexity and the cost. Alternatively we in this paper design and implement a pilot slop-crack monitoring and prediction system which is based on low-cost commercial sensor networks. The proposed system is easy to install on cliffs, slopes, rocks, and banks and may minimize the destruction of the original geographical forms. Expected is that its installation and maintenance costs may reduce to the half of those of existing systems.

Automated Surface Wave Measurements for Evaluating the Depth of Surface-Breaking Cracks in Concrete

  • Kee, Seong-Hoon;Nam, Boohyun
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.307-321
    • /
    • 2015
  • The primary objective of this study is to investigate the feasibility of an innovative surface-mount sensor, made of a piezoelectric disc (PZT sensor), as a consistent source for surface wave velocity and transmission measurements in concrete structures. To this end, one concrete slab with lateral dimensions of 1500 by 1500 mm and a thickness of 200 mm was prepared in the laboratory. The concrete slab had a notch-type, surface-breaking crack at its center, with depths increasing from 0 to 100 mm at stepwise intervals of 10 mm. A PZT sensor was attached to the concrete surface and used to generate incident surface waves for surface wave measurements. Two accelerometers were used to measure the surface waves. Signals generated by the PZT sensors show a broad bandwidth with a center frequency around 40 kHz, and very good signal consistency in the frequency range from 0 to 100 kHz. Furthermore, repeatability of the surface wave velocity and transmission measurements is significantly improved compared to that obtained using manual impact sources. In addition, the PZT sensors are demonstrated to be effective for monitoring an actual surface-breaking crack in a concrete beam specimen subjected to various external loadings (compressive and flexural loading with stepwise increases). The findings in this study demonstrate that the surface mount sensor has great potential as a consistent source for surface wave velocity and transmission measurements for automated health monitoring of concrete structures.

Analysis for the Crack Characteristics of Rock and Concrete using Strain and Elastic Wave (변형률과 탄성파를 이용한 암석 및 콘크리트 균열특성분석)

  • Choi, Young Chul;Kim, Jin Seop;Park, Tae Jin;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.253-262
    • /
    • 2017
  • The purpose of this paper is to analyze the crack characteristics by performing the compression test of the rock and concrete specimens. The experiments are carried out by using strain sensors which can measure length change and the AE sensor which can detect the elastic wave from the crack. The crack volumetric strain calculated from measured strain is shown in different shape on the rock and the concrete specimens. This is because the specimens have a different degree of brittleness. However, the crack volumetric strain associated with the fracture and damage was similar to accumulated AE energy of the two specimens. This means that the AE sensor can assess damage in real time without damaging the structure.

Development and Control of a Roadway Seam Tracking Mobile Robot

  • Cho, Hyun-Taek;Jeon, Poong-Woo;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2502-2507
    • /
    • 2003
  • In this paper, a crack sealing robot is developed. The crack sealing robot is built to detect, track, and seal the crack on the pavement. The sealing robot is required to brush all dirt in the crack out for preparing a better sealing job. Camera calibration has been done to get accurate crack position. In order to perform a cleaning job, the explicit force control method is used to regulate a specified desired force in order to maintain constant contact with the ground. Experimental studies of force tracking control are conducted under unknown environment stiffness and location. Crack tracking control is performed. Force tracking results are excellent and the robot finds and tracks the crack very well.

  • PDF

Study on Non-contact Detection of Surface Cracks of the Metals Using an Open-Ended Coaxial Line Sensor at X-band (마이크로파 X-밴드에서의 종단 개방 동축선 센서를 이용한 금속표면균열의 비접촉 검출 연구)

  • Yang, Seung-Hwan;Kim, Dong-Seok;Kim, Ki-Bok;Kim, Jong-Heon;Kang, Jin-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.192-197
    • /
    • 2012
  • In this paper, a non-contact microwave technique was presented to detect the surface crack of the metals. An open-ended coaxial cable line was used as a sensor at 11 GHz, and the reflection coefficients were measured by scanning along the metal surface including artificial surface cracks. A parameter, the K value which was defined as the difference between maximum and minimum reflection coefficients, was measured and used to estimate the crack depth. A linear relationship between the K value and crack depth was found. This study showed that non-contact detection of the surface cracks of metals is possible using the open-ended coaxial line sensor at X-band.

A Study of Stress Intensity Factors using Micro Fiber Composite Sensors (MFC 센서를 이용한 응력 확대 계수 측정에 관한 연구)

  • Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.76-81
    • /
    • 2011
  • Recently, the structural failures due to fatigue occur frequently with the increase of size of ships and offshore structures. In this respect, the assessment of fatigue life and the residual strength are very important. Currently, the smart materials technology has demonstrated a variety of possibilities for a diagnosis of structural strength and structural health condition for large structures. The benefits and feature of the MFC sensor are more flexible, durable and reliable than conventional smart material. In this study, Micro Fiber Composite (MFC) sensor for the measurement of stress intensity factor (SIF) of two dimensional cracks induced in a structure is developed. Two MFC sensors are placed in the vicinity of the crack tip close to each other with the crack tip in between them. The SIFs of Mode I($K_I$) as well as of Mode II($K_{II}$) based on the piezoelectric constitutive law and fracture mechanics are calculated. In this study, the SIF values measured by MFC sensors are compared with the theoretical results and measured value.