• Title/Summary/Keyword: crack properties

Search Result 1,593, Processing Time 0.029 seconds

A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(I) (직교 이방성체의 동적 응력확대계수에 관한 연구(I))

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.313-330
    • /
    • 1993
  • The propagating crack problems under dynamic plane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems in orthortropic material, it is important to know the dynamic stress components and dynamic displacement components around the crack tip. Therefore the dynamic stress components of dynamic stress field and dynamic displacement components of dynamic displacement field in the crack tip of orthotropic material under the dynamic load and the steady state in crack propagation were derived. When the crack propagation speed approachs to zero, the dynamic stress component and dynamic displacement components derived in this study are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determinded by using the concept of crack closure closure energy with the dynamic stresses and represented according to physical properties of the orthotrophic material and crack speeds. The faster the crack velocity, the greater the stress value of stress components in crack tip. The stress value of the stress component of crack tip is greater when fiber direction coincides with the crack propagation than when fider direction is normal to the crack propagation.

Evaluation of Material Properties for Yonggwang Nuclear Piping Systems(II) - Safety Injection System- (영광원자력 배관소재의 재료물성치 평가 (II) -안전주입계통-)

  • 김영진;석창성;장윤석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1451-1459
    • /
    • 1995
  • The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for safety injection system of Yonggwang 3,4 nuclear generating stations. A total of 62 tensile tests and 46 fracture toughness tests were conducted and the effects of various parameters such as pipe size, crack plane orientation, tests were conducted and the effects of various parameters such as pipe size, crack plane orientation, test temperature, welding on material properties were discussed. Test results show that the effect of test temperature on fracture toughness was significant while the effects of pipe size and crack plane orientation on fracture toughness were negligible. Fracture toughness of the weld metal was in general higher than that of the base metal.

The Influence of Resin Mixture Ratio for the Use of Prepreg on the Fatigue Behavior Properties in FRMLs

  • Song, Sam-Hong;Kim, Cheol-Woong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.33-41
    • /
    • 2000
  • Fiber reinforced metal laminates(FRMLs) were new type of hybrid materials. FRMLs consist of high strength metals(Al 5052-H34) and laminated fiber with structural adhesive bond. The effect of resin mixture ratios on the fatigue crack propagation behavior and mechanical properties of aramid fiber reinforced aluminum composites was investigated. The epoxy, diglycidylether of bisphenol A(DGEBA), was cured with methylene dianiline(MDA) with or without an accelerator(K-54). Eight kinds of resin mixture ratio were used for the experiment ; five kinds of FRMLs(1)(mixture of epoxy and curing agent) and three kinds of FRMLs(2)mixture of epoxy, curing agent and accelerator). The characteristic of fatigue crack propagation behavior and mechanical properties FRMLs(2) shows more effecting than that of FRMLs(1).

  • PDF

Effects of multi-walled carbon nanotubes on the hydration heat properties of cement composites

  • Ha, Sung-Jin;Rajadurai, Rajagopalan Sam;Kang, Su-Tae
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.439-450
    • /
    • 2021
  • In recent years, nano-reinforcing materials are widely utilized in cement composites due to their unique multifunctional properties. This study incorporated multi-walled carbon nanotubes (MWCNTs) into the cementitious composites at ratios of 0.1%, 0.3%, and 0.5%, and investigated their influence on the flowability, mechanical strength, and hydration heat properties. The addition of MWCNTs enhanced the compressive and split tensile strengths approximately by 18-51%. In the semi-adiabatic temperature rise test, the internal hydration heat of the composites reduced by 5%, 9%, and 12% with the increase of MWCNTs in 0.1%, 0.3%, and 0.5%. This study further performed hydration heat analysis and estimated the adiabatic temperature rise, thermal stress, and thermal crack index. The internal hydration heat of the concrete decreased by 5%, 10%, and 13% with the increase of MWCNTs. The thermal stress of the concrete decreased with increase in the addition of MWCNTs, and the obtained temperature crack index was effective in controlling the thermal cracks.

Surface crack growth behaviors of 304 stainless steel at elevated temperatures (304 스테인리스 鋼의 高溫에서의 表面균열 成長特性에 관한 硏究)

  • 서창민;신형섭;권영태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.355-361
    • /
    • 1987
  • Creep and fatigue tests were carried out on crack growth properties of small surface cracks in 304 stainless steel at 538.deg.C, 593.deg. C and 650.deg. C in air, by using small plate specimens with a small artificial pit. All the data of the crack growth rate per hour obtained in the present tests were correlated with the maximum stress intensity factor, so that the applicability of linear fracture mechanics to the crack growth of surface cracks at elevated temperature was investigated. In the creep test, relatiion of .sigma.$\^$n/.t$\_$f/=C is obtained between failure time and nominal stress at each temperature level, where n has the value of 11-14 depending on the temperature level. In the creep and fatigue crack growth properties of surface cracks at the elevated temperatures, the maximum stress intensity factor, $_{4}$$\_$max/, is some extent applicable parameter to describe the surface crack growth rate under the present experimental conditions. The crack growth rate per hour increases when the holding time decreases, and creep crack growth rate per hour becomes the lowest limit of crack growth rate per hour in this tests.

Toughness Index and Post-Crack Equivalent Tensile Strength of Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트의 휨 인성지수와 균열 후 등가인장강도)

  • 박홍용;이태림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.593-596
    • /
    • 1999
  • Steel fibers are added to concrete to improve energy absorption, impact resistance and apparent ductility, and to provide crack resistance and crack control. This study is to investigate the toughness index and post-crack equivalent tensile strength of steel fiber reinforced concrete properties on the load-deflection behaviors of the steel fiber reinforced concrete beam model specimens.

  • PDF

A Study on the Mechanical Properties and the Fatigue Crack Propagation Behavior of Ti Welding Material (Ti 용접재의 기계적 특성 및 피로크팩 진전거동에 관한 연구)

  • 최병기;장경천
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.64-69
    • /
    • 2002
  • The purpose of this paper was to investigate the welding characteristics and the fatigue crack propagation behavior of titanium commonly using power station, aircraft and ship. The experimented material was TIG welded in order to look over the characteristics according to the notch position and compare with other materials. We compared and reviewed the fatigue crack propagation behavior of nontch base metal and welded specimens having different notch position to evaluate the fatigue crack propagation behavior by welding condition.

  • PDF

A Study on the Fatigue Crack Propagation of Partly Heat Treated Medium Carbon Alloy Steel (부분 열처리한 기계 구조용 합금강의 피로균열 전파에 관한 연구)

  • 이억섭;김선용
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.3-8
    • /
    • 1997
  • It is well known that mechanisms of fracture and fatigue crack propagation depend upon various characteristics such as environmental condition, crack geometry, heat treatment and mechanical properties. It seems to be important for the detailed evaluation of structural components which contain flaws. In this paper, it is studied that the fatigue crack propagation of partly heat treated medium carbon alloy steel(SCM440) by high frequency heat treatment.

  • PDF

A Study on the Fatigue Crack Propagation of Partly Heat Treated Medium Carbon Steel (부분 열처리한 기계 구조용 탄소강의 피로균열 전파에 관한 연구)

  • 김상철;김선용
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 1993
  • It is well known that mechanisms of fracture and fatigue crack propagation depend upon various characteristics such as environmental condition. crack geometry. heat treatment and mechanical properties. It seems to be important for the detailed evaluation of structural integrity to investigate the effects of the above factors on the behavior of structural components which contain flaws. In this paper. it is studied that the fatigue crack propagation of partly heat treated medium carbon steel (SM45C) by high frequency heat treatment.

  • PDF

Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy

  • Selmi, Abdellatif
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.365-377
    • /
    • 2019
  • This paper investigates the effectiveness of Single Walled Carbon Nanotubes, SWNT, in improving the dynamic behavior of cracked Aluminium alloy, Al-alloy, beams by using a method based on changes in modal strain energy. Mechanical properties of composite materials are estimated by the Eshelby-Mori-Tanaka method. The influence of SWNT volume fraction, SWNT aspect ratio, crack depth and crack location on the natural frequencies of the damaged 3D randomly oriented SWNT reinforced Al-alloy beams are examined. Results demonstrate the significant advantages of SWNT in reducing the effect of cracks on the natural frequencies of Al-alloy beams.