DOI QR코드

DOI QR Code

Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy

  • Selmi, Abdellatif (Department of Civil Engineering, College of Engineeriwng in Al-Kharj, Prince Sattam bin Abdulaziz University)
  • Received : 2019.04.15
  • Accepted : 2019.08.07
  • Published : 2019.09.25

Abstract

This paper investigates the effectiveness of Single Walled Carbon Nanotubes, SWNT, in improving the dynamic behavior of cracked Aluminium alloy, Al-alloy, beams by using a method based on changes in modal strain energy. Mechanical properties of composite materials are estimated by the Eshelby-Mori-Tanaka method. The influence of SWNT volume fraction, SWNT aspect ratio, crack depth and crack location on the natural frequencies of the damaged 3D randomly oriented SWNT reinforced Al-alloy beams are examined. Results demonstrate the significant advantages of SWNT in reducing the effect of cracks on the natural frequencies of Al-alloy beams.

Keywords

References

  1. Anderson, T.L. (2005), Fracture Mechanics: Fundamental and applications, Third Edition. London, CRC Press, Taylor and Francis Group.
  2. Bakhadda, B., Bachir Bouiadjra, M., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., Int. J., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311
  3. Banerjee, J.R. and Guo, S. (2009), "On the dynamics of a cracked beam", Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, CA, USA, May, 2429.
  4. Benveniste, Y. (1987), "A new approach to the application of Mori-Tanaka's theory in composite materials", Mech. Mater., 6(2), 147-157. https://doi.org/10.1016/0167-6636(87)90005-6
  5. Borvik, T., Hopperstad, O.S. and Pedersen, K.O. (2010), "Quasibrittle fracture during structural impact of AA7075-T651 aluminium plates", Int. J. Impact Eng., 37(5), 537-551. https://doi.org/10.1016/j.ijimpeng.2009.11.001
  6. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147
  7. Chen, L.H., Duan, J.W., Sun, Y. and Li, J. (2013), "The study of the Vibration Characteristics of the Cantilever Beam with a Surface Crack", Appl. Mech. Mater., 394(C), 121-127. https://doi.org/10.4028/www.scientific.net/AMM.394.121
  8. Chondros, T., Dimarogonas, A. and Yao, J. (1998), "A continuous cracked beam vibration theory", J. Sound Vib., 215(1), 17-34. https://doi.org/10.1006/jsvi.1998.1640
  9. Doghri, I. and Ouaar, A. (2003), "Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms", Int. J. Solids Struct., 40(7), 1681-1712. https://doi.org/10.1016/S0020-7683(03)00013-1
  10. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117
  11. Duan, F., Liu, J., Wang, G. and Yu, Z. (2018), "Dynamic behaviour of aluminium alloy plates with surface cracks subjected to repeated impacts", Ships Offshore Struct., 14(5), 478-491. https://doi.org/10.1080/17445302.2018.1507088
  12. Dumont, D., Deschamps, A. and Brechet, Y. (2003), "On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy", Mater. Sci. Eng., 356(2), 326-336. https://doi.org/10.1016/S0921-5093(03)00145-X
  13. Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A., Abasi, M., Hanifehpour, Y. and Joo, S.W. (2014), "Carbon nanotubes: properties, synthesis, purification, and medical applications", Nanoscale Res. Lett., 9, 393. https://doi.org/10.1186/1556-276X-9-393
  14. Ebrahimi, F. and Mahmoodi, M. (2018), "Vibration analysis of carbon nanotubes with multiple cracks in thermal environment", Adv. Nano Res., Int. J., 6(1), 57-80. https://doi.org/10.12989/anr.2018.6.1.057
  15. Friebel, C., Doghri, I. and Legat, V. (2006), "General mean-field homogenization schemes for viscoelastic composites containing multiple phases of coated inclusions", Int. J. Solids Struct., 43(9), 2513-2541. https://doi.org/10.1016/j.ijsolstr.2005.06.035
  16. Gudmundson, P. (1982), "Eigenfrequency changes of structures due to cracks, notches or other geometrical changes", J. Mech. Phys. Solids, 30(5), 339-353. https://doi.org/10.1016/0022-5096(82)90004-7
  17. Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res, Int. J., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299
  18. Han, N.M., Zhang, X.M., Liu, S.D., Ke, B. and Xin, X. (2011), "Effects of pre-stretching and aging on the strength and fracture toughness of aluminium alloy 7050", Mater. Sci. Eng. A, 528(10-11), 3714-3721. https://doi.org/10.1016/j.msea.2011.01.068
  19. Heshmati, M. and Yas, M.H. (2013), "Free vibration analysis of functionally graded CNT-reinforced nanocomposite beam using Eshelby-Mori-Tanaka approach", J. Mech. Sci. Technol., 27(11), 3403-3408. https://doi.org/10.1007/s12206-013-0862-8
  20. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with grapheme nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036
  21. Kim, J. and Stubbs, N. (2003), "Crack detection in beam-type structures using frequency data", J. Sound Vib., 259(1), 145-160. https://doi.org/10.1006/jsvi.2002.5132
  22. Kisa, M., Brandon, J. and Topcu, M. (1998), "Free vibration analysis of cracked beams by a combination of finite elements and component mode synthesis methods", Comput. Struct., 67(4), 215-223. https://doi.org/10.1016/S0045-7949(98)00056-X
  23. Liu, R.P., Dong, Z.J. and Pan, Y.M. (2006), "Solidification crack susceptibility of aluminum alloy weld metals", Transact. Nonferrous Metals Soc. China, 16(1), 110-116. https://doi.org/10.1016/S1003-6326(06)60019-8
  24. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials withmisfitting inclusions", Acta Metallurgica, 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  25. Mostafavi, M., Smith, D.J. and Pavier, M.J. (2011), "Fracture of aluminium alloy 2024 under biaxial and triaxial loading", Eng. Fract. Mech., 78(8), 1705-1716. https://doi.org/10.1016/j.engfracmech.2010.11.006
  26. Nejati, M., Eslampanah, A. and Najafizadeh, M.H. (2016), "Buckling and vibration analysis of functionally graded carbon nanotube-reinforced beam under axial load", Int. Appl. Mech., 8(1), 1650008. https://doi.org/10.1142/S1758825116500083
  27. Pedersen, K.O., Borvik, T. and Hopperstad, O.S. (2011), "Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions", Mater. Des., 32(1), 97-107. https://doi.org/10.1016/j.matdes.2010.06.029
  28. Rahbar-Ranji, A. and Zarookian, A. (2015), "Ultimate strength of stiffened plates with a transverse crack under uniaxial compression", Ships Offshore Struct., 10(4), 416-425. https://doi.org/10.1080/17445302.2014.942078
  29. Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2019), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., Int. J., 4(1), 31-44. https://doi.org/10.12989/anr.2016.4.1.031
  30. Ravi, K. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135
  31. Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445
  32. Selmi, A., Friebel, C., Doghri, I. and Hassis, H. (2007), "Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: A comparative study of several micromechanical models", Compos. Sci. Technol., 67(10), 2071-2084. https://doi.org/10.1016/j.compscitech.2006.11.016
  33. Seifi, R. and Khoda-yari, N. (2011), "Experimental and numerical studies on buckling of cracked thin-plates under full and partial compression edge loading", Thin-wall. Struct., 49(12), 1504-1516. https://doi.org/10.1016/j.tws.2011.07.010
  34. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089
  35. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  36. Shenas, A.G., Malekzadeh, P. and Ziaee, S. (2017), "Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 162, 325-340. https://doi.org/10.1016/j.compstruct.2016.12.009
  37. Shi, X.H., Zhang, J. and Soares, C.G. (2017), "Experimental study on collapse of cracked stiffened plate with initial imperfections under compression", Thin-wall. Struct., 114(C), 39-51. https://doi.org/10.1016/j.tws.2016.12.028
  38. Xing, M.Z., Wang, Y.G. and Jiang, Z.X. (2013), "Dynamic fracture behaviors of selected aluminum alloys under three-point bending", Defence Technol., 9(4), 193-200. https://doi.org/10.1016/j.dt.2013.11.002
  39. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessels Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
  40. Zainuddin, H.B. and Ali, M.B. (2016), "Study of wheel rim impact test using finite element analysis", Proceedings of Mechanical Engineering Research Day, 141.

Cited by

  1. Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.439
  2. Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2019, https://doi.org/10.12989/scs.2020.37.6.695
  3. Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.033
  4. Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2019, https://doi.org/10.12989/cac.2021.27.1.073
  5. Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT vol.91, pp.7, 2019, https://doi.org/10.1007/s00419-021-01973-7
  6. An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2019, https://doi.org/10.12989/scs.2021.40.2.307
  7. An innovative system for novel vibration of rotating FG shell with combination of fraction laws vol.12, pp.2, 2019, https://doi.org/10.12989/acc.2021.12.2.157
  8. Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2019, https://doi.org/10.12989/scs.2021.40.5.697