• Title/Summary/Keyword: crack properties

Search Result 1,593, Processing Time 0.024 seconds

Study on the Fatigue Behaviors of R/C Beam Strengthened with Steel Plate and Carbon Fiber Sheet (강판 및 탄소섬유 sheet로 보강된 R/C 보의 피로거동에 관한 연구)

  • 심종성;홍영균;최완철;황의숭;이차돈;배인환;박성재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.319-324
    • /
    • 1995
  • Strengthening a damaged structure by bonding steel plate on the surface of cracked structural members have been widely accepted for strengthening the structural components Recently, however, caron fiber sheets have been developed in order to achive more effective way of strengthening damaged structures due to their superior material properties to those of conventionally used steel plates in terms of their lighter unit weight and higher tensile strength. It has been reported that when both methods are applied to a damaged beam element, flexural strength and its stiffness of a beam increase and the rate of crack development as well as crack width and edflection under service loads are reduced, In this study some experiments are performed in order to comparetively observe the structural properties of the damaged beams which are either strengthened with different lengths of steel plates or with carbon sheets on the crack propagation, failure mechanisms, and load-deflection charateristics under the fatigue loadings.

  • PDF

Numerical Analysis of Concrete Fracture Properties (콘크리트 파괴특성의 수치해석)

  • 연정흠
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.237-244
    • /
    • 1995
  • Fracture properties for LEFM, S-FPZ and NS-FPZ models were determined using by finite element method and energy balance from the experimental results of three-point bend tests. For the LEFM model the stress intensity factor needed to increase continuously with crack extension, and for the S-FPZ model the fracture process zone characteristics need to change continuously if the critical stress intensity factor was to remain constant. The LEFM model showed the largest resistance and the slowest crack extension, while the NS-FPZ model showed the smallest resistance and the fastest crack extension. The responses for the S-FPZ model were intermediate between those for the LEFM and NS-FPZ models and the total fracture energy densities for the S-FPZ and NS-FPZ models and the total fracture energy densities for the S-FPZ and NS-FPZ models were equal.

  • PDF

Physical Properties of Plastering Mortar with Waste FRP for the Floor (폐 FRP를 혼입한 바닥미장모르타르의 물리적 특성)

  • Kim, Seong Hwan;Lee, Kook Jae;Park, Jong Won;Baek, Joo Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.17-20
    • /
    • 2008
  • This study investigated the fundamental properties and cracking shapes of mortar for the floor after Mock-up test with FRP as wastes of crafts. For the flowability of fresh mortar without FRP, it was favorable compared with fresh mortar using FRP, and the drop time at O-Lot was similar to the flowability. For the compressive strength of fresh mortar with FRP, it was increased about 10% compared with plain. The flexible strength was also increased on fresh mortar with FRP. On the cracking shape, there was many penetrated crack in all directions on plain. In the case that FRP was used, it seemed to have excellent resistance to the crack occurrence because there was no directive crack at a limited part.

  • PDF

The intergrity assessment of buried pipeline (매설배관의 건전성 평가)

  • Lee, Ouk-Sub;Yin, Hai-Long
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.333-338
    • /
    • 2001
  • The object of this work is to develop an assessment system for pipeline integrity. The system consists of four module applications for internal algorithm; the effect of corrosion in pipeline, crack, stress corrosion crack (SCC) and fatigue modules and the effect of cavity. Presently, the module of the external corrosion has been developed and the internal algorithm for the effect of corrosion in pipeline and the database of the system are described in this paper. The database of the system is separated to mainly four parts; geometry of pipeline, material properties, boundary conditions and general properties. Each components of the system are designed by user-friendly concept. This system may give a guideline for maintenance and modifications for the pipeline at the industrial sight. Furthermore, a procedure to evaluate an inspection interval is also provided.

  • PDF

The characteristics of Near-thrshold fatigue crack propagation for welding zone in TMCP high strength steels (TMCP 고장력강 용접부의 하한계 피로균열진전 특성평가)

  • 이택순;오대석;이휘원
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.39-47
    • /
    • 1997
  • Recently developed TMCP steels, which were manufactured by controlled rolling followed by accelerated cooling process, were examined to study their characteristics and weldability. Accelerated cooling type TMCP steel's hardness test result exhibited high value on weld zone. On the contrary, base metal and HAZ exhibited comparatively the similar value. On this experiment result Softening of HAZ is not occurred. in the-heat affected zone, grain size repression be caused by chemical composition properties which a small quantity Al-Ti-B-N. Changing stress ratio near-threshold fatigue crack propagation experiments were carried out. According to this result, crack propagation velocity of the HAZ exhibited slower than the base metal and near-threshold value had increased at the HAZ. Finally accelerated cooling type TMCP steels were exhibited excellent mechanical properties in both strength and toughness.

  • PDF

A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(II) A Study on the Stress Field, Displacement Field and Energy Release Rate in the Dynamic Mode III under Constant Crack Propagation Velocity (직교 이방성체의 동적 응력확대계수에 관한 연구 (II) 등속균열전파 속도하에서 동적모드 III 상태의 응력장, 변위장, 에너지해방률에 관한 연구)

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.331-341
    • /
    • 1993
  • The propagating crack problems under dynamic antiplane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems by theoretical method or experimental method in orthotropic material, it is important to know the dynamic stress intensity factor in the vicinity of crack tip. Therefore the dynamic stress field and dynamic displacement field with dynamic stress intensity factor of orthotropic material in mode III were derived. When the crack propagation speed approachs to zero, the dynamic stress components and dynamic displacement components derived in this paper are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determined by using the concept of crack closure energy with the dynamic stresses and dynamic displacements derived in this paper. Finally, the characteristics of crack propagation are studied with the properties of orthotropic material and crack speed. The variation of angle .alpha. between fiber direction and crack propagating direction and crack propagation speed fairly effect on stress component and displacement component in crack tip. The influence of crack propagation speed on the speed on the stress and displacement is greater in the case of .alpha.=90.deg. than in the case of .alpha.=0.deg. and the faster the crack propagation speed, the greater the stress value and displacement value.

Crack initiation mechanism and meso-crack evolution of pre-fabricated cracked sandstone specimens under uniaxial loading

  • Bing Sun;Haowei Yang;Sheng Zeng;Yu Yin;Junwei Fan
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.597-609
    • /
    • 2023
  • The instability and failure of engineered rock masses are influenced by crack initiation and propagation. Uniaxial compression and acoustic emission (AE) experiments were conducted on cracked sandstone. The effect of the crack's dip on the crack initiation was investigated using fracture mechanics. The crack propagation was investigated based on stress-strain curves, AE multi-parameter characteristics, and failure modes. The results show that the crack initiation occurs at the tip of the pre-fabricated crack, and the crack initiation angle increases from 0° to 70° as the dip angle increases from 0° to 90°. The fracture strength kcr is derived varies in a U-shaped pattern as β increased, and the superior crack angle βm is between 36.2 and 36.6 and is influenced by the properties of the rock and the crack surface. Low-strength, large-scale tensile cracks form during the crack initiation in the cracked sandstone, corresponding to the start of the AE energy, the first decrease in the b-value, and a low r-value. When macroscopic surface cracks form in the cracked sandstone, high-strength, large-scale shear cracks form, resulting in a rapid increase in the AE energy, a second decrease in the b-value and an abrupt increase in the r-value. This research has significant theoretical implications for rock failure mechanisms and establishment of damage indicators in underground engineering.

The Curved Interfacial Crack Analysis between Foam and Composite Materials under Anti-plane Shear Force (반평면 전단하중력을 받는 곡면형상을 가지는 폼과 복합재료 접합부의 계면크랙에 관한 연구)

  • 박상현;신재윤;전흥재
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.101-104
    • /
    • 2000
  • The general solution of the anti-plane shear problem for the curved interfacial crack between viscoelastic foam and composites was investigated with the complex variable displacement function and Kelvin-Maxwell model. The Laplace transform was applied to treat the viscoelastic characteristics of foam in the analysis. The stress intensity factor near the interfacial crack tip was predicted by considering both anisotropic and viscoelastic properties of two different materials. The results showed that the stress intensity factor increased with increasing the curvature of the curved interfacial crack and it also increased and eventually converged to a specific value with increasing time.

  • PDF

A Study on the Strength Evaluation of Welded Joints for Degraded Material (열화재 용접부의 강도평가에 관한 연구)

  • 정의정;윤한용;임명환;김태식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.75-82
    • /
    • 2002
  • Welding is used not only for the shipbuilding, but also for the repairing of ships. While repairing of ships, it is inevitable to weld new materials with degraded materials. In this case, it is predicted that the strength of both the sections is not identical each other. In this study, the respective welded joints in terms of mechanical properties such as microstructure, mechanical strength and fatigue crack propagation, with the component obtained from the barge used for a long-term period, were analyzed. It was found that the material degradation had a significant effect on the welded joints. The fatigue crack propagation in welded sections showed a big difference. The rate of fatigue crack growth of degraded material for both heat affected zone and parent metal was faster than that of new material. By contrast, the result from identical materials showed that the rate of fatigue crack growth of the heat-affected zone was slower than that of parent metal.

A Study on Corrosion Fatigue Properties of Welded Joints for TMCP High Strength Steels (TMCP 고장력강 용접부의 부식도영 특성에 관한 연구)

  • 이택순;이휘원;김영철
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.14-23
    • /
    • 1996
  • The corrosion fatigue test were carried out to evaluate the fatigue characteristics of accelerated cooled (ACC) TMCP high tensile strength steels and weld joint with high heat input by one side one run submerged are welding. In this paper, the fatigue crack growth behaviors were investigated with the center crack tension specimen of base metal and heat affected zone in substitute sea water and air, respectively Main results obtained are sunnarized as follows: 1. The fatigue crack growth rates in sea water faster than those in air environment for the different heat input values, crack growth rate of base metal is very fast and effect of heat input is not remarkable. 2. In HAZ (82kJ/cm, 116kJ/cm), the crack branching phenomena were observed in both air and sea water environment, 3. In SEM observation, the corrosion effect on base metal was larger than that on HAZ in corrosion environment.

  • PDF