• Title/Summary/Keyword: crack path

Search Result 232, Processing Time 0.02 seconds

Path Stability of a Crack with an Eigenstrain

  • Beom, Hyeon-Gyu;Kim, Yu-Hwan;Cho, Chong-Du;Kim, Chang-Boo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1428-1435
    • /
    • 2006
  • A slightly curved crack with an eigenstrain is considered. Solutions for a slightly curved crack in a linear isotropic material under asymptotic loading as well as for a slightly curved crack in a linear isotropic material with a concentrated force are obtained from perturbation analyses, which are accurate to the first order of the parameter representing the non-straightness. Stress intensity factors for a slightly curved crack with an eigenstrain are obtained from the perturbation solutions by using a body force analogy. Particular attention is given to the crack path stability under mode I loading. A new parameter of crack path stability is proposed for a crack with an eigenstrain. The path stability of a crack with steady state growth in a transforming material and a ferroelectric material is examined.

A Study on the Fatigue Crack Growth of Cracks in Mechanical Joints (기계적 체결부 균열의 피로균열성장에 관한 연구)

  • 허성필;양원호;정기현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.187-194
    • /
    • 2002
  • It has been reported that cracks in mechanical joints is generally under mixed-mode and there is critical inclined angle at which mode I stress intensity factor becomes maximum. The crack propagates in arbitrary direction and thus the prediction of crack growth path is needed to provide against crack propagation or examine safety. In order to evaluate the fatigue life of cracks in mechanical joints, horizontal crack normal to the applied load and located on minimum cross section is major concern but critical inclined crack must also be considered. In this paper mixed-mode fatigue crack growth test is performed far horizontal crack and critical inclined crack in mechanical joints. Fatigue crack growth path is predicted by maximum tangential stress criterion using stress intensity factor obtained from weight function method, and fatigue crack growth rates of horizontal and inclined crack are compared.

Study on dynamic interaction between crack and inclusion or void by using XFEM

  • Jiang, Shouyan;Du, Chengbin
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.329-345
    • /
    • 2017
  • This paper devoted to study dynamic interaction between crack and inclusion or void by developing the eXtended Finite Element Methods (XFEM). A novel XFEM approximation is presented for these structures containing multi discontinuities (void, inclusion, and crack). The level set methods are used so that elements that include a crack segment, the boundary of a void, or the boundary of an inclusion are not required to conform to discontinuous edges. The investigation covers the effects of a single circular or elliptical void / stiff inclusion, and multi stiff inclusions on the crack propagation path under dynamic loads. Both the void and the inclusion have a significant effect on the dynamic crack propagation path. The crack initially curves towards into the void, then, the crack moves round the void and propagates away the void. If a large void lies in front of crack tip, the crack may propagate into the void. If an enough small void lies in front of crack tip, the void may have a slight or no influence on the crack propagation path. For a stiff inclusion, the crack initially propagates away the inclusion, then, after the crack moves round the inclusion, it starts to propagate along its original path. As ${\delta}$ (the ratio of the elastic modulus of the inclusion to that of the matrix) increases, a larger curvature of the crack path deflection can be observed. However, as ${\delta}$ increases from 2 to 10, the curvature has an evident increase. By comparison, the curvature has a slight increase, as ${\delta}$ increases from 10 to 1000.

A Prediction of Crack Growth Path by Boundary Element Method (경계요소법(境界要素法)에 의한 균열 진전경로(進展經路)의 예측)

  • S.C.,Kim;W.K.,Lim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.39-46
    • /
    • 1988
  • The purpose of this paper is to apply the boundary element method to predict the crack growth path. The quarter point element with traction singularity at the crack tip is applied to compact tension type specimens and two inclined slit problems under compression load. The maximum stress criterion which was originally derived for the crack initiation is extended to the analysis of the crack propagation. The predicted crack paths with 1/4 crack growth increment of initial crack length agree quite well with experimental results. It is found that the computed crack path of the boundary element analysis is not mainly affected by the crack increment length.

  • PDF

Prediction of Propagation Path for the Interface Crack in Bonded Dissimilar Materials (이종접합재의 계면균열에 대한 진전경로의 예측)

  • 정남용;송춘호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.112-121
    • /
    • 1996
  • Applications of bonded dissimilar materials such as metal/ceramics and resin/metal joints, are very increasing in various industry fields. It is required to find crack propagation direction and path applying to the fracture mechanics on the bonded joint of dissimilar meterials. In this paper, crack propagation direction and path were simulated numerically by using boundary element method. Crack propagation angle is able to easily determine based on the maximum stress concept. Fracture tests of Al/Epoxy dissimilar materials with an interface crack are carried out under various mixed mode conditions by using the specimens of bonded scarf joints. It is found that the experimental results are well coincide with the analysis results of boundary element method.

A local-global scheme for tracking crack path in three-dimensional solids

  • Manzoli, O.L.;Claro, G.K.S.;Rodrigues, E.A.;Lopes, J.A. Jr.
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.261-283
    • /
    • 2013
  • This paper aims to contribute to the three-dimensional generalization of numerical prediction of crack propagation through the formulation of finite elements with embedded discontinuities. The analysis of crack propagation in two-dimensional problems yields lines of discontinuity that can be tracked in a relatively simple way through the sequential construction of straight line segments oriented according to the direction of failure within each finite element in the solid. In three-dimensional analysis, the construction of the discontinuity path is more complex because it requires the creation of plane surfaces within each element, which must be continuous between the elements. In the method proposed by Chaves (2003) the crack is determined by solving a problem analogous to the heat conduction problem, established from local failure orientations, based on the stress state of the mechanical problem. To minimize the computational effort, in this paper a new strategy is proposed whereby the analysis for tracking the discontinuity path is restricted to the domain formed by some elements near the crack surface that develops along the loading process. The proposed methodology is validated by performing three-dimensional analyses of basic problems of experimental fractures and comparing their results with those reported in the literature.

Fracture mechanics analysis of a crack in a weld of dissimilar steels using the J-ingegral (J-적분을 이용한 이종강재 용접접합부 균열의 파괴역학적 해석)

  • 이진형;장경호
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.264-266
    • /
    • 2004
  • for the kぉ mechanics analysis of a crack in a weld of dissimilar steels, residual stress analysis and fracture analysis must be performed simultaneously. The standard definition of the J-integral leads to a path dependent value in the presence of a residual stress field. And unlike cracks in homogeneous materials, a bimaterial interface crack always induces both opening and shearing modes of stress in the vicinity of the crack tip. Therefore, it is necessary to develope a path independent J-integral definition for a crack in a residual stress field generated by welding of dissimilar steels. This paper addresses the modification of the Rice-J-integral to produce a path independent J-integral when residual stresses due to welding of dissimilar steels and external forces are present. The residual stress problem is heated as an initial stain problem and the J-integral proposed for this class of problems is used And a program which can evaluate the 1-integral for a crack in a weld of dissimialr steels is developed using proposed J-integral definition.

  • PDF

The Variation of Fatigue Crack Propagation Behavior by Crack-crack Interaction (크랙 사이의 간섭에 의한 피로크랙 전파거동의 변화)

  • 송삼홍;배준수;최병호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.820-825
    • /
    • 1994
  • It is improtant to examine life or crack propagation behavior of structures because of its safety evaluation. The purpose of this study is to investigate the effect of crack-crack interaction to evaluate fatigue life and crack behavior. In this study, the behavior of the interaction of two cracks is studied by experiment. The vertical distance of two cracks is varied to make different interaction stress field. In addition, the effect of plastic zone is considered to examine crack propagation path and propagation rate.

  • PDF

Variation of fatigue crack propagation behavior based on the shape of the interaction between two cracks (두 크랙의 간섭형태에 따른 피로크랙전파거동의 변화)

  • Song, Sam-Hong;Choe, Byeong-Ho;Bae, Jun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1097-1105
    • /
    • 1997
  • Because of the existence of stress interaction field made by other defects and propagating cracks, the structure may be weakened. Therefore in this study, the crack behavior in the interaction field made by two different cracks is studied experimentally. In the experiment, vertical distance between two cracks and applied stress are varied to make different stress interacted field. In addition, the effect of plastic zone is used to examine crack propagation path and rate. Three types of crack propagation in the interacted field were found, and crack propagating path and rate of two cracks were significantly changed according to different applied stress as each crack propagates. And the results are attributed to the effect of the size and shape of the plastic zone.

Mode I crack propagation analisys using strain energy minimization and shape sensitivity

  • Beatriz Ferreira Souza;Gilberto Gomes
    • Structural Engineering and Mechanics
    • /
    • v.92 no.1
    • /
    • pp.99-110
    • /
    • 2024
  • The crack propagation path can be considered as a boundary problem in which the crack advances towards the interior of the domain. Consequently, this poses an optimization problem wherein the local crack-growth direction angle can be treated as a design variable. The advantage of this approach is that the continuous minimization of strain energy naturally leads to the mode I propagation path. Furthermore, this procedure does not rely on the precise characterization of the stress field at the crack tip and is independent of stress intensity factors. This paper proposes an algorithm based on internal point exploration as well as shape sensitivity optimization and strain energy minimization to determine the crack propagation direction. To implement this methodology, the algorithm utilizes a modeling GUI associated with an academic analysis program based on the Dual Boundary Elements Method and determines the propagation path by exploiting the elastic strain energy at points in the domain that are candidates to be included in the boundary. The sensitivity of the optimal solution is also assessed in the vicinity of the optimum point, ensuring the stability and robustness of the solution. The results obtained demonstrate that the proposed methodology accurately predicts the crack propagation direction in Mode I opening for a single crack (lateral and central). Furthermore, robust optimal solutions were achieved in all cases, indicating that the optimal solution was not highly sensitive to changes in the design variable in the vicinity of the optimal point.