• Title/Summary/Keyword: crack opening ratio

Search Result 122, Processing Time 0.017 seconds

Structural Behavior of Steel Fiber-Reinforced Concrete Beams with High-Strength Rebar Subjected to Bending (휨을 받는 강섬유 보강 고강도철근 콘크리트 보의 구조 거동)

  • Yang, In-Hwan;Kim, Kyoung-Chul;Joh, Changbin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.93-102
    • /
    • 2016
  • The purpose of this paper is to investigate the flexural behavior of high-strength steel fiber-reinforced concrete beams with compressive strength of 130 MPa. The paper presents experimental research results of steel fiber-reinforced concrete beams with steel fiber content of 1.0% by volume and steel reinforcement ratio of less than 0.02. Both of normal-strength rebar and high-strength rebar were used in the test beams. Modeling as well as compressive and tensile strength test of high-strength steel fiber-reinforced concrete was performed to predict the bending strength of concrete beams. Tension modeling was performed by using inverse analysis in which load-crack mouth opening displacement relationship was considered. The experimental results show that high-strength steel fiber-reinforced concrete beams and the addition of high-strength rebar is in favor of cracking resistance and ductile behavior of beams. For beams reinforced with normal-strength rebar, the ratio of bending strength prediction to the test result ranged from 0.81 to 1.42, whereas for beams reinforced with high-strength rebar, the ratio of bending strength prediction to the test result ranged from 0.92 to 1.07. The comparison of bending strength from numerical analysis with the test results showed a reasonable agreement.

An Experimental Study on Tensile Properties of Steel Fiber-Reinforced Ultra High Strength Concrete (강섬유 보강 초고강도 콘크리트의 인장 특성 실험 연구)

  • Yang, In-Hwan;Park, Ji-Hun;Lee, Jae-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.279-286
    • /
    • 2019
  • In this study, an experimental study on the tensile properties of steel fiber-reinforced ultra high strength concrete(UHSC) with a standard compressive strength of 180MPa was performed. Steel fibers with a volume ratio of 1% were mixed to prepare direct tensile strength specimens and prism specimens for the three-point bending test. The fabricated specimens were set up in the middle section of the specimen to induce cracks, and the test was carried out according to each evaluation method. First, the stress-strain curves were analyzed by performing direct tensile strength tests to investigate the behavior characteristics of concrete after cracking. In addition, the load-CMOD curve was obtained through the three-point bending test, and the inverse analysis was performed to evaluate the stress-strain curve. Tensile behavior characteristics of the direct tensile test and the three-point bending test of the indirect test were similar. In addition, the tensile stress-strain curve modeling presented in the SC structural design guidelines was performed, and the comparative analysis of the measured and predicted values was performed. When the material reduction factor of 1.0 was applied, the predicted value was similar to the measured value up to the strain of 0.02, but when the material reduction factor of 0.8 was applied, the predicted value was close to the lower limit of the measured value. In addition, when the strain was greater than 0.02, the predicted value by SC structural design guideline to underestimated the measured value.