DOI QR코드

DOI QR Code

Structural Behavior of Steel Fiber-Reinforced Concrete Beams with High-Strength Rebar Subjected to Bending

휨을 받는 강섬유 보강 고강도철근 콘크리트 보의 구조 거동

  • Received : 2016.01.20
  • Accepted : 2016.02.18
  • Published : 2016.05.01

Abstract

The purpose of this paper is to investigate the flexural behavior of high-strength steel fiber-reinforced concrete beams with compressive strength of 130 MPa. The paper presents experimental research results of steel fiber-reinforced concrete beams with steel fiber content of 1.0% by volume and steel reinforcement ratio of less than 0.02. Both of normal-strength rebar and high-strength rebar were used in the test beams. Modeling as well as compressive and tensile strength test of high-strength steel fiber-reinforced concrete was performed to predict the bending strength of concrete beams. Tension modeling was performed by using inverse analysis in which load-crack mouth opening displacement relationship was considered. The experimental results show that high-strength steel fiber-reinforced concrete beams and the addition of high-strength rebar is in favor of cracking resistance and ductile behavior of beams. For beams reinforced with normal-strength rebar, the ratio of bending strength prediction to the test result ranged from 0.81 to 1.42, whereas for beams reinforced with high-strength rebar, the ratio of bending strength prediction to the test result ranged from 0.92 to 1.07. The comparison of bending strength from numerical analysis with the test results showed a reasonable agreement.

이 논문의 목적은 압축강도 130 MPa급의 고강도 강섬유 보강 콘크리트 보의 휨거동 특성을 파악하는데 있다. 부피비 1.0%의 강섬유와 철근비 0.02 이하의 철근으로 보강된 고강도 강섬유 보강 콘크리트의 휨거동 특성 실험결과를 제시하였다. 일반강도철근과 고강도철근을 실험 부재에 사용하였다. 강섬유 보강 콘크리트의 압축 및 인장거동 재료 실험과 모델링을 수행하였다. 강섬유 보강 콘크리트의 하중-균열개구변위 실험결과를 반영하여 가상균열모델에 근거한 역해석을 통해 인장거동모델링을 제시하였다. 실험결과는 강섬유 보강 콘크리트와 고강도철근의 사용은 균열제어 및 연성 거동에 유리한 것을 나타낸다. 일반강도철근을 사용한 보의 휨강도 실험값에 대한 수치해석에 의한 예측값의 비는 0.81~1.42를 나타내고, 고강도철근을 사용한 보의 휨강도 실험값에 대한 수치해석에 의한 예측값의 비는 0.92~1.07을 나타낸다. 수치해석에 의한 휨강도는 실험결과를 합리적으로 예측하고 있는 것으로 판단된다.

Keywords

References

  1. Ashour, S. A., and Waff, F. F. (1993), Flexural Behavior of High-Strength Fiber Reinforced Concrete Beams, ACI Structural Journal, 90(3), 279-287.
  2. Ashour, S. A., Hasanain, G. S., and Wafa, F. F. (1992), Shear Behavior of High-Strength Fiber Reinforced Concrete Beams, ACI Structural Journal, 89(2), 176-184.
  3. El-Hacha, R., El-Agroudy, H., and Rizkalla, S. (2006), Bond Characteristics of High-Strength Steel Reinforcement, ACI Structural Journal, 103(6), Nov-Dec, 771-782.
  4. Elliot, K. S., Peaston, C. H., and Paine, K. A. (2002), Experimental and Theoretical Investigation of the Shear Resistance of Steel Fibre Reinforced Prestressed Concrete X-beams - Part I : Experimental work, Materials and Structures, 35(253), 519-527. https://doi.org/10.1617/13808
  5. Han, S. M., and An, J. W. (2015), The Ductile Behavior Test of Ultra High Performance Fiber Reinforced Concrete Rectangular Beam by the Combination of the Fiber and Group of Reinforcing Bars, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(3), 139-148. https://doi.org/10.11112/jksmi.2015.19.3.139
  6. Hillerborg A., Modeer, M., Petersson, P. E. (1976), Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cement and Concrete Research, 6(6), 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
  7. Hwang, H. H., Yeo, I. S., Cho, K. H., and Park, S. Y. (2011), Evaluation of Flexural Strength for UHPC Deck Joints with Lap-Spliced Reinforced Steel Bar, Journal of the Korea Institute for Structural Maintenance and Inspection, 15(4), 221-231. https://doi.org/10.11112/jksmi.2011.15.4.221
  8. Jang. S. J., Kang, S. W., and Yun, H. D. (2015), Cracking Behavior and Flexural Performance of RC Beam with Strain Hardening Cement Composite and High-Strength Reinforcing Bar, Journal of the Korea Concrete Institute, 27(1), 37-44. https://doi.org/10.4334/JKCI.2015.27.1.037
  9. Kal, K. W., Kim. K. S., Lee, D. H., Hwang, J. H., and Oh, Y. H. (2010), Experimental Study on Shear Strength of Steel Fiber Reinforced Concrete Beams, Journal of the Korea Institute for Structural Maintenance and Inspection, 14(3), 160-170.
  10. Kang, S. T., Kim Y. Y., Lee, B. Y., and Kim, J. K. (2008), Fiber Orientation Impacts on the Flexural Behavior of Steel Fiber Reinforced High Strength Concrete, Journal of the Korea Concrete Institute, 20(6), 731-739. https://doi.org/10.4334/JKCI.2008.20.6.731
  11. Kitsutaka, Y. (1997), Fracture Parameters by Polylinear Tension-softening Analysis, Journal of Engineering Mechanics, ASCE, 123(5), 444-450. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:5(444)
  12. Kim, K. C., Yang, I. H., and Joh, C.B. (2016), Material Properties and Structural Characteristics on Flexure of Steel Fiber-Reinforced Ultra-High-Performance Concrete, Journal of the Korea Concrete Institute, 28(2), 177-185. https://doi.org/10.4334/JKCI.2016.28.2.177
  13. Kwak, Y. K., Eberhard, M. O., Kim. W. S., and Kim, J. (2002), Shear Strength of Steel Fiber-Reinforced Concrete Beams without Stirrups, ACI Structural Journal, 99(4), 530-538.
  14. Mast, R. F., Dawood, M., Rizkalla, S. M., and Zia, P. (1998), Flexural Behavior of Concrete Beams Reinforced with High-Strength Steel Bars, ACI Structural Journal, 105(4), 570-577.
  15. Oh, B. H. (1992), Flexural Analysis of Reinforced Concrete Beams Containing Steel Fibers, Journal of Structural Engineering, ASCE, 118(10), 2812-2863.
  16. Soltani, A. (2010), Bond and Serviceability Characterization of Concrete Reinforced with High Strength Steel, PhD thesis, University of Pittsburgh.
  17. Sumpter, M. S. (2007), Behavior of High Performance Steel as Shear Reinforcement for Concrete Beams, ACI Structural Journal, 106(2), 171-177.
  18. Swamy, R.N., and Al-Ta'an, S.A. (1981), Deformation and Ultimate Strength in Flexure of Reinforced Concrete Beams Made with Steel Fiber Concrete, ACI Structural Journal, 78(5), 395-405.
  19. Yang, I. H., Joh, C. B., and Kim, B. S. (2010), Structural Behavior of Ultra High Performance Concrete Beams Subjected to Bending, Engineering Structures, 32(11), 3478-3487. https://doi.org/10.1016/j.engstruct.2010.07.017
  20. Yang, I. H., Joh, C. B., and Kim, B. S. (2011), Flexural Strength of Large Scale Ultra High Performance Concrete Prestressed T-Beams, Canadian Journal of Civil Engineers, 38(11), 1185-1195. https://doi.org/10.1139/l11-078
  21. Yang, I. H., Kim, K. C., and Joh, C. B. (2015), Flexural Strength of Hybrid Steel Fiber-Reinforced Ultra-High Strength Concrete Beams, Journal of the Korea Concrete Institute, 27(3), 280-287.
  22. Yuguang, Y., Walraven, J., and Uiji, J. D. (2008), Study on bending behavior of an UHPC overlay on a steel orthotropic deck, Proceeding of 2nd International Symposium on Ultra High Performance Concrete, Germany, 639-646.

Cited by

  1. 강섬유 보강 초고성능 콘크리트 부재의 휨강도 평가에 관한 실험적 연구 vol.36, pp.9, 2020, https://doi.org/10.5659/jaik.2020.36.9.157