• Title/Summary/Keyword: crack network

Search Result 159, Processing Time 0.03 seconds

Adversarial learning for underground structure concrete crack detection based on semi­supervised semantic segmentation (지하구조물 콘크리트 균열 탐지를 위한 semi-supervised 의미론적 분할 기반의 적대적 학습 기법 연구)

  • Shim, Seungbo;Choi, Sang-Il;Kong, Suk-Min;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.515-528
    • /
    • 2020
  • Underground concrete structures are usually designed to be used for decades, but in recent years, many of them are nearing their original life expectancy. As a result, it is necessary to promptly inspect and repair the structure, since it can cause lost of fundamental functions and bring unexpected problems. Therefore, personnel-based inspections and repairs have been underway for maintenance of underground structures, but nowadays, objective inspection technologies have been actively developed through the fusion of deep learning and image process. In particular, various researches have been conducted on developing a concrete crack detection algorithm based on supervised learning. Most of these studies requires a large amount of image data, especially, label images. In order to secure those images, it takes a lot of time and labor in reality. To resolve this problem, we introduce a method to increase the accuracy of crack area detection, improved by 0.25% on average by applying adversarial learning in this paper. The adversarial learning consists of a segmentation neural network and a discriminator neural network, and it is an algorithm that improves recognition performance by generating a virtual label image in a competitive structure. In this study, an efficient deep neural network learning method was proposed using this method, and it is expected to be used for accurate crack detection in the future.

A Comparative Study on Performance of Deep Learning Models for Vision-based Concrete Crack Detection according to Model Types (영상기반 콘크리트 균열 탐지 딥러닝 모델의 유형별 성능 비교)

  • Kim, Byunghyun;Kim, Geonsoon;Jin, Soomin;Cho, Soojin
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.50-57
    • /
    • 2019
  • In this study, various types of deep learning models that have been proposed recently are classified according to data input / output types and analyzed to find the deep learning model suitable for constructing a crack detection model. First the deep learning models are classified into image classification model, object segmentation model, object detection model, and instance segmentation model. ResNet-101, DeepLab V2, Faster R-CNN, and Mask R-CNN were selected as representative deep learning model of each type. For the comparison, ResNet-101 was implemented for all the types of deep learning model as a backbone network which serves as a main feature extractor. The four types of deep learning models were trained with 500 crack images taken from real concrete structures and collected from the Internet. The four types of deep learning models showed high accuracy above 94% during the training. Comparative evaluation was conducted using 40 images taken from real concrete structures. The performance of each type of deep learning model was measured using precision and recall. In the experimental result, Mask R-CNN, an instance segmentation deep learning model showed the highest precision and recall on crack detection. Qualitative analysis also shows that Mask R-CNN could detect crack shapes most similarly to the real crack shapes.

Vector and Thickness Based Learning Augmentation Method for Efficiently Collecting Concrete Crack Images

  • Jong-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.65-73
    • /
    • 2023
  • In this paper, we propose a data augmentation method based on CNN(Convolutional Neural Network) learning for efficiently obtaining concrete crack image datasets. Real concrete crack images are not only difficult to obtain due to their unstructured shape and complex patterns, but also may be exposed to dangerous situations when acquiring data. In this paper, we solve the problem of collecting datasets exposed to such situations efficiently in terms of cost and time by using vector and thickness-based data augmentation techniques. To demonstrate the effectiveness of the proposed method, experiments were conducted in various scenes using U-Net-based crack detection, and the performance was improved in all scenes when measured by IoU accuracy. When the concrete crack data was not augmented, the percentage of incorrect predictions was about 25%, but when the data was augmented by our method, the percentage of incorrect predictions was reduced to 3%.

Fabrication of Chromium-based Double Layered Deposit (크롬계 이중도금층 제조 및 특성평가)

  • Park, Sang-Eon;Kim, Dong-Su;Kim, Man;Jang, Do-Yeon;Gwon, Sik-Cheol
    • 연구논문집
    • /
    • s.31
    • /
    • pp.127-133
    • /
    • 2001
  • In chromium electrodeposition, crack is inevitably accompanied by chromium layer. Behavior of crack formation and crack density were different from the plating conditions such as current density, temperature, waveform of applied current and so on. And cracks have an influence on the corrosion resistance of chromium deposit, because corrosion occurs through the network of cracks between deposit and substrate. Therefore, many researches have been achieved in order to remove the cracks in chromium deposit. Formation of double layers, Cr/Cr and Ni/Cr were investigated to increase corrosion resistance of chromium deposit in this study. As pretreatment prior to outer chromium coating, acid pickling and current control method were examined. Cracks in cross-section of each sample were observed with SEM and CASS(Copper modified acetic acid salt spray) test was performed to evaluate corrosion resistance. It was found that corrosion resistance of Cr/Cr and Ni/Cr double layers were superior to Cr or Ni single layer from the results of CASS test.

  • PDF

Pixel-level Crack Detection in X-ray Computed Tomography Image of Granite using Deep Learning (딥러닝을 이용한 화강암 X-ray CT 영상에서의 균열 검출에 관한 연구)

  • Hyun, Seokhwan;Lee, Jun Sung;Jeon, Seonghwan;Kim, Yejin;Kim, Kwang Yeom;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.184-196
    • /
    • 2019
  • This study aims to extract a 3D image of micro-cracks generated by hydraulic fracturing tests, using the deep learning method and X-ray computed tomography images. The pixel-level cracks are difficult to be detected via conventional image processing methods, such as global thresholding, canny edge detection, and the region growing method. Thus, the convolutional neural network-based encoder-decoder network is adapted to extract and analyze the micro-crack quantitatively. The number of training data can be acquired by dividing, rotating, and flipping images and the optimum combination for the image augmentation method is verified. Application of the optimal image augmentation method shows enhanced performance for not only the validation dataset but also the test dataset. In addition, the influence of the original number of training data to the performance of the deep learning-based neural network is confirmed, and it leads to succeed the pixel-level crack detection.

A Study on Fatigue Damage Modeling Using Neural Networks

  • Lee Dong-Woo;Hong Soon-Hyeok;Cho Seok-Swoo;Joo Won-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1393-1404
    • /
    • 2005
  • Fatigue crack growth and life have been estimated based on established empirical equations. In this paper, an alternative method using artificial neural network (ANN) -based model developed to predict fatigue damages simultaneously. To learn and generalize the ANN, fatigue crack growth rate and life data were built up using in-plane bending fatigue test results. Single fracture mechanical parameter or nondestructive parameter can't predict fatigue damage accurately but multiple fracture mechanical parameters or nondestructive parameters can. Existing fatigue damage modeling used this merit but limited real-time damage monitoring. Therefore, this study shows fatigue damage model using backpropagation neural networks on the basis of X -ray half breadth ratio B / $B_o$, fractal dimension $D_f$ and fracture mechanical parameters can estimate fatigue crack growth rate da/ dN and cycle ratio N / $N_f$ at the same time within engineering limit error ($5\%$).

Crack Detection on the Road in Aerial Image using Mask R-CNN (Mask R-CNN을 이용한 항공 영상에서의 도로 균열 검출)

  • Lee, Min Hye;Nam, Kwang Woo;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.3
    • /
    • pp.23-29
    • /
    • 2019
  • Conventional crack detection methods have a problem of consuming a lot of labor, time and cost. To solve these problems, an automatic detection system is needed to detect cracks in images obtained by using vehicles or UAVs(unmanned aerial vehicles). In this paper, we have studied road crack detection with unmanned aerial photographs. Aerial images are generated through preprocessing and labeling to generate morphological information data sets of cracks. The generated data set was applied to the mask R-CNN model to obtain a new model in which various crack information was learned. Experimental results show that the cracks in the proposed aerial image were detected with an accuracy of 73.5% and some of them were predicted in a certain type of crack region.

Short-Term Crack in Sewer Forecasting Method Based on CNN-LSTM Hybrid Neural Network Model (CNN-LSTM 합성모델에 의한 하수관거 균열 예측모델)

  • Jang, Seung-Ju;Jang, Seung-Yup
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.11-19
    • /
    • 2022
  • In this paper, we propose a GoogleNet transfer learning and CNN-LSTM combination method to improve the time-series prediction performance for crack detection using crack data captured inside the sewer pipes. LSTM can solve the long-term dependency problem of CNN, so spatial and temporal characteristics can be considered at the same time. The predictive performance of the proposed method is excellent in all test variables as a result of comparing the RMSE(Root Mean Square Error) for time series sections using the crack data inside the sewer pipe. In addition, as a result of examining the prediction performance at the time of data generation, the proposed method was verified that it is effective in predicting crack detection by comparing with the existing CNN-only model. If the proposed method and experimental results obtained through this study are utilized, it can be applied in various fields such as the environment and humanities where time series data occurs frequently as well as crack data of concrete structures.

The Performance Advancement of Test Algorithm for Inner Defects in Semiconductor Packages (반도체 패키지의 내부 결함 검사용 알고리즘 성능 향상)

  • 김재열;윤성운;한재호;김창현;양동조;송경석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.345-350
    • /
    • 2002
  • In this study, researchers classifying the artificial flaws in semiconductor packages are performed by pattern recognition technology. For this purposes, image pattern recognition package including the user made software was developed and total procedure including ultrasonic image acquisition, equalization filtration, binary process, edge detection and classifier design is treated by Backpropagation Neural Network. Specially, it is compared with various weights of Backpropagation Neural Network and it is compared with threshold level of edge detection in preprocessing method fur entrance into Multi-Layer Perceptron(Backpropagation Neural network). Also, the pattern recognition techniques is applied to the classification problem of defects in semiconductor packages as normal, crack, delamination. According to this results, it is possible to acquire the recognition rate of 100% for Backpropagation Neural Network.

  • PDF

The Performance Advancement of Test Algorithm for Inner Defects In Semiconductor Packages (반도체 패키지의 내부 결함 검사용 알고리즘 성능 향상)

  • Kim J.Y.;Kim C.H.;Yoon S.U.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.721-726
    • /
    • 2005
  • In this study, researchers classifying the artificial flaws in semiconductor. packages are performed by pattern recognition technology. For this purposes, image pattern recognition package including the user made software was developed and total procedure including ultrasonic image acquisition, equalization filtration, binary process, edge detection and classifier design is treated by Backpropagation Neural Network. Specially, it is compared with various weights of Backpropagation Neural Network and it is compared with threshold level of edge detection in preprocessing method for entrance into Multi-Layer Perceptron(Backpropagation Neural network). Also, the pattern recognition techniques is applied to the classification problem of defects in semiconductor packages as normal, crack, delamination. According to this results, it is possible to acquire the recognition rate of 100% for Backpropagation Neural Network.

  • PDF