• Title/Summary/Keyword: crack measurement

Search Result 434, Processing Time 0.022 seconds

Evaluation of Fatigue Strain Intensity Factor on Fatigue Crack Propagation Rate (da/dN) (금속 재료의 피로 균열 전파 속도(da/dN) 평가를 위한 변형율 확대 계수의 유효성 검토)

  • 유재환;최재강;손종동
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.3-8
    • /
    • 1996
  • Fatigue fracture is the cyclic fracture phenomena at a very small local area near a crack tip. Therefore, the detailed quantitative experimental analysis about local cyclic strain distribution near a crack tip is prerequisite In order to make an effective parameter able to account for fatigue fracture problems. However, there are few reports on detailed quantitative experimental analysis of a local cyclic strain distribution near a crack tip, because of experimental difficulties. In this study, the distribution of local fatigue strains near a fatigue crack tip was in detail studied using by fine dot grid strain measurement method. From these results, a single parameter, which characterizes local fatigue strain field, was proposed. In addition, this parameter was applied to evaluate the fatigue crack propagation rate.

  • PDF

The variation of critical current by the formation of crack in a high-temperature superconducting tape (크랙에 의한 고온 초전도체 테이프의 임계전류 특성변화)

  • 박을주;설승윤
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.73-77
    • /
    • 2002
  • The variation of critical current by the formation of crack in a high temperature super-conducting tape was studied by experimental and numerical analyses. The current-voltage relation of HTS tape is measured by the four-point measurement method. Numerical analyses are used to solve two dimensional heat conduction equation, considering the temperature distribution. By comparing current-voltage relation of experimental and numerical results, the validity of numerical method is verified.

Noise and Fault Diagnosis Using Control Theory

  • Park, Rai-Wung;Sul Cho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.24-30
    • /
    • 2000
  • The aim of this paper is to describe an advanced method of the fault diagnosis using Control Theory with reference to a crack detection, a new way to localize the crack position under influence of the plant disturbance and white measurement noise on a rotating shaft. As the first step, the shaft is physically modelled with a finite element method as usual and the dynamic mathematical model is derived from it using the Hamilton-principle and in this way the system is modelled by various subsystems. The equations of motions with a crack are established by the adaption of the local stiffness change through breathing and gaping[1] from the crack to the equation of motion with an undamaged shaft. This is supposed to be regarded as a reference system for the given system. Based on the fictitious model of the time behaviour induced from vibration phenomena measured at the bearings, a nonlinear state observer is designed in order to detect the crack on the shaft. This is the elementary NL-observer(EOB). Using the elementary observer, an Estimator(Observer Bank) is established and arranged at the certain position on the shaft. In case, a crack is found and its position is known, the procedure, fro the estimation of the depth is going to begin.

  • PDF

Residual static strength of cracked concrete-filled circular steel tubular (CFCST) T-joint

  • Cui, M.J.;Shao, Y.B.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1045-1062
    • /
    • 2015
  • Concrete-filled circular t steel tubular joints (CFSTJs) in practice are frequently subjected to fluctuated loadings caused by wind, earthquake and so on. As fatigue crack is sensitive to such cyclic loadings, assessment on performance of CFSTJs with crack-like defect attracts more concerns because both high stress concentration at the brace/chord intersection and welding residual stresses along weld toe cause the materials in the region around the intersection to be more brittle. Once crack initiates and propagates along the weld toe, tri-axial stresses in high gradient around the crack front exist, which may bring brittle fracture failure. Additionally, the stiffness and the load carrying capacity of the CFSTJs with crack may decrease due to the weakened connection at the intersection. To study the behaviour of CFSTJs with initial crack, experimental tests have been carried out on three full-scale CFCST T-joints with same configuration. The three specimens include one uncracked joint and two corresponding cracked joints. Load-displacement and load-deformation curves, failure mode and crack propagation are obtained from the experiment measurement. According to the experimental results, it can be found that he load carrying capacity of the cracked joints is decreased by more than 10% compared with the uncracked joint. The effect of crack depth on the load carrying capacity of CFCST T-joints seems to be slight. The failure mode of the cracked CFCST T-joints represents as plastic yielding rather than brittle fracture through experimental observation.

Experimental Verifications of Fatigue Crack Identification Method Using Excitation Force Level Control for a Cantilever Beam (외팔보에 대한 가진력수준제어를 통한 피로균열규명기법의 실험적 검증)

  • Kim Do-Gyoon;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1467-1474
    • /
    • 2004
  • In this study, a new damage identification method for beam-like structures with a fatigue crack is proposed. which does not require comparative measurement on an intact structure but require several measurements at different level of excitation forces on the cracked structure. The idea comes from the fact that dynamic behavior of a structure with a fatigue crack changes with the level of the excitation force. The 2$^{nd}$ spatial derivatives of frequency response functions along the longitudinal direction of a beam are used as the sensitive indicator of crack existence. Then, weighting function is employed in the averaging process in frequency domain to account for the modal participation of the differences between the dynamic behavior of a beam with a fatigue crack at the low excitation and one at the high excitation. Subsequently, a damage index is defined such that the location and level of the crack may be identified. It is shown from the analysis of vibration measurements in this study that comparison of frequency response characteristics of a beam with a single fatigue crack at different level of excitation forces enables an effective detection of the crack.

A Study on Non-propagating Crack in Fatigue Behavior of Pure Titanium (공업용 순 티타늄의 피로거동에서 정류균열에 관한 연구)

  • Kim, Dong-Yeol;Kim, Jin-Hak;Kim, Min-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1001-1006
    • /
    • 2000
  • To verify the existing theory, non-propagating crack(NPC) does not exist in Ti which fulfills the good conditions for being of NPC, NPC detection in Ti was tried out. Also, the conception of fatigue limit in Ti and a main cause for NPC being were inquired. NPC was detected in both sharp notch root ( $\rho$=0.02mm) and micro pit (diameter = 0.25mm) which held fast to the end under stressing of fatigue limit. Therefore, the existing theory was identified as mistake. But, NPC can not be detected in smooth specimen. This fact would be due to the presumption that NPC is very small or crack does not initiate in smooth specimen. Anyway, the fatigue limit of Ti does not correspond to critical stress of crack initiation but correspond to critical stress of NPC growth. Measurement on the COD of NPC in Ti showed that the crack tip was closed even under the peak stress level at fatigue limit. But, after stress relieving annealing crack tip was opened. Consequently, compressive residual stress which is induced around the crack tip is considered to be the factor causing the NPC being.

Surface Crack Detection in Compression of Pre Heat-Treated Steel (ESW90) Using an Acoustic Emission Sensor (음향방출센서를 이용한 선조질강(ESW90)의 압축실험에서의 표면 균열 발생 검출)

  • Lee, J.E.;Lee, J.M.;Joo, H.S.;Seo, Y.H.;Kim, J.H.;Kim, S.W.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • In the design of the metal forming processes, various types of ductile fracture criteria are used to predict crack initiation and to fabricate metallic products without any defects. However, the quantitative measurement method for determination of crack initiation is insufficient. It is very difficult to detect crack initiation in ductile metals with excellent deformability because no significant load drop is observed due to crack generation. In this study, the applicability of acoustic emission sensors, which are commonly used in facility diagnostics, to measure crack initiation during the metal forming process was analyzed. Cylindrical notch specimens were designed using the finite element method to induce a premature crack on the surface of pre heat-treated steel (ESW90) material. In addition, specimens with various notch angles and heights were prepared and compression tests were carried out. During the compression tests, acoustic emission signal on the dies and images of the surface of the notch specimen were recorded using an optical camera in real time. The experimental results revealed that the acoustic emission sensor can be used to detect crack initiation in ductile metals due to severe plastic deformation.

Tc-To Method in Measurement of Concrete Crack (Tc-To법에 의한 콘크리트 균열측정)

  • 민정기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.108-114
    • /
    • 1997
  • Concrete is said to have a high degree of extensibility when it is subjected to large deformations without cracking. The cracking behavior of concrete in the field may even be more complex. For example, in mass concrete compressive stresses are developed during the very early period when temperatures are rising, and the tensile stresses do not develop until at a later age when the temperature begins to decline. Actual cracking and failure depend on the combination of factors and indeed it is rarely that a single adverse factor is responsible for cracking of concrete. The importance of cracking and the minimum width at which a crack is considered significant depend on the conditions of exposure of the concrete. The ultrasonic pulse measurements can be used to detect the development of cracks in structures such as dams, and to check deterioration due to frost or chemical action. An estimate of the depth of a crack visible at the surface can be obtained by measuring the transit times across the crack for two different arrangements of the transducers placed on the surface. In this paper, the concrete cracks that artificially introduced crack width is 1 and 2mm, crack depth is 2, 4, 6, 8cm were measured by Tc-To Method In consequence, the measured depth was increased with increase of measuring distance from concrete crack. The most reliable results were shown when the introduced crack width was 1mm, and the measuring distance was 10cm from concrete crack.

  • PDF

Detection of crack in L-shaped pipes filled with fluid based on transverse natural frequencies

  • Murigendrappa, S.M.;Maiti, S.K.;Srirangarajan, H.R.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.635-658
    • /
    • 2005
  • The possibility of detecting a crack in L-shaped pipes filled with fluid based on measurement of transverse natural frequencies is examined. The problem is solved by representing the crack by a massless rotational spring, simulating the out-of-plane transverse vibration only without solving the coupled torsional vibration and using the transfer matrix method for solution of the governing equation. The theoretical solutions are verified by experiments. The cracks considered are external, circumferentially oriented and have straight front. Pipes made of aluminium and mild steel are tested with water as internal fluid. Crack size to pipe thickness ratio ranging from 0.20 to 0.57 and fluid (gauge) pressure in the range of 0 to 10 atmospheres are examined. The rotational spring stiffness is obtained by an inverse vibration analysis and deflection method. The details of the two methods are given. The results by the two methods are presented graphically and show good agreement. Crack locations are also determined by the inverse analysis. The maximum absolute error in the location is 13.80%. Experimentally determined variation of rotational spring stiffness with ratio of crack size to thickness is utilized to predict the crack sizes. The maximum absolute errors in prediction of crack size are 17.24% and 16.90% for aluminium and mild steel pipes respectively.