• Title/Summary/Keyword: crack assessment

Search Result 396, Processing Time 0.034 seconds

Numerical Fracture Mechanics Evaluation on Surface Cracks in a Spherical Oxygen Holder (구형 산소용기 내 표면균열에 대한 수치파괴역학 평가)

  • Cho, Doo-Ho;Kim, Jong-Min;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Han, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1187-1194
    • /
    • 2009
  • During the last decade, possibility of flaw occurrences has been rapidly increased world-widely as the increase of operating times of petro-chemical facilities. For instance, from a recent in-service inspection, three different sized surface cracks were detected in welding parts of a spherical oxygen holder in Korea. While API579 code provides corresponding engineering assessment procedures to determine crack driving forces, in the present work, numerical analyses are carried out for the cracked oxygen holder to investigate effects of complex geometry, analysis model and residual stress. With regard to the detailed finite element analysis, stress intensity factors are determined from both the full three-dimensional model and equivalent plate model. Also, as an alternative, stress intensity factors are calculated for equivalent plate model by employing the noted influence stress function technique. Finally, parametric structural integrity evaluation of the cracked oxygen holder is conducted in use of failure assessment diagram method, J/T method and DPFAD method. Effects of the geometry and so forth are examined and key findings from the simulations are fully discussed, which enables to determine practical safety margins of spherical components containing a defect.

Nondestructive Testing and Applications for Integrity Assessment of Power Plant Facilities by Acoustic Emission Technology - Part 1 : The Theory of Acoustic Emission Technology(I) - (발전설비 건전성평가를 위한 음향방출 비파괴검사 적용기술 - 제1편 : 음향방출 비파괴검사기술 이론(I) -)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.5-13
    • /
    • 2005
  • Acoustic emission(AE) is defined as the transient elastic waves thar are generated by the rapid release of energy. The advantage of AE is that very early crack growth can be detected well before a highly stressed component may fail. At present, an exact diagnosis is the most reliable means for determining the soundness of structures during power plant operations. AE monitoring has been applied successfully in power plants to determine mechanical problems, pressure vessel integrity and external valves leaks, vacuum leaks, the onset of cavitation in pumps and valves, the presence of flow(or no flow) in piping and heat exchange equipment, etc. Acoustic emission(AE) technology has recently strengthened its application base, and practitioners' understanding of the technique's fundamentals. This paper introduces the methods of a survey and assessment on AE monitoring applications in nuclear, fossil and hydraulic power plant. The main objective of this paper was to obtain information on various applications of AE technology in power plant.

  • PDF

A Study on the Change of Physical Capability of Waterproofing Layer after the Application of Static Load and Moving Load to a Non-Exposed Type Waterproofing Layer (비노출 방수층에 작용하는 정하중과 동하중 작용 후의 방수층 물성변화에 관한 연구)

  • Seon, Yun-Suk;Kim, Jin-Seong;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.141-145
    • /
    • 2007
  • The part in the structure that is most affected by changes of external temperature is the protective concrete layer that protects a waterproofing layer. Also, the waterproofing layer that is situated under or on the back of such a protective concrete layer is affected by temperature and the behavior of the protective concrete layer under the condition of consolidation or close adhesion. In particular, in many cases, the damage is serious mainly around the projection (such as a parapet), crack, and joint (expansion joint). However, there is no proper way of examining again the non-exposed waterproofing layer once it has been constructed. Therefore, there is an assessment only on the physical property of materials and the capability of the layer in construction, and there is no actual assessment in consideration of its environmental condition or the condition of the use of buildings after construction. Therefore, in order to create more pleasant buildings and to enhance the durability of structures, this study conducts research into the change of capability of non-exposed waterproofing material after the application of a static load and moving load on the waterproofing layer situated under or on the back of protective concrete.

  • PDF

Strain and deformation angle for a steel pipe elbow using image measurement system under in-plane cyclic loading

  • Kim, Sung-Wan;Choi, Hyoung-Suk;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.190-202
    • /
    • 2018
  • Maintaining the integrity of the major equipment in nuclear power plants is critical to the safety of the structures. In particular, the soundness of the piping is a critical matter that is directly linked to the safety of nuclear power plants. Currently, the limit state of the piping design standard is plastic collapse, and the actual pipe failure is leakage due to a penetration crack. Actual pipe failure, however, cannot be applied to the analysis of seismic fragility because it is difficult to quantify. This paper proposes methods of measuring the failure strain and deformation angle, which are necessary for evaluating the quantitative failure criteria of the steel pipe elbow using an image measurement system. Furthermore, the failure strain and deformation angle, which cannot be measured using the conventional sensors, were efficiently measured using the proposed methods.

LIFE-SPAN SIMULATION AND DESIGN APPROACH FOR REINFORCED CONCRETE STRUCTURES

  • An, Xuehui;Maekawa, Koichi;Ishida, Tetsuya
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.3-17
    • /
    • 2007
  • This paper provides an introduction to life-span simulation and numerical approach to support the performance design processes of reinforced concrete structures. An integrated computational system is proposed for life-span simulation of reinforced concrete. Conservation of moisture, carbon dioxide, oxygen, chloride, calcium and momentum is solved with hydration, carbonation, corrosion, ion dissolution. damage evolution and their thermodynamic/mechanical equilibrium. Coupled analysis of mass transport and damage mechanics associated with steel corrosion is presented for structural performance assessment of reinforced concrete. Multi-scale modeling of micro-pore formation and transport phenomena of moisture and ions are mutually linked for predicting the corrosion of reinforcement and volumetric changes. The interaction of crack propagation with corroded gel migration can also be simulated. Two finite element codes. multi-chemo physical simulation code (DuCOM) and nonlinear dynamic code of structural reinforced concrete (COM3) were combined together to form the integrated simulation system. This computational system was verified by the laboratory scale and large scale experiments of damaged reinforced concrete members under static loads, and has been applied to safety and serviceability assessment of existing structures. Based on the damage details predicted by the nonlinear finite element analytical system, the life-span-cost of RC structures including the original construction costs and the repairing costs for possible damage during the service life can be evaluated for design purpose.

  • PDF

Assessment of computational performance for a vector parallel implementation: 3D probabilistic model discrete cracking in concrete

  • Paz, Carmen N.M.;Alves, Jose L.D.;Ebecken, Nelson F.F.
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.345-366
    • /
    • 2005
  • This work presents an assessment of the computational performance of a vector-parallel implementation of probabilistic model for concrete cracking in 3D. This paper shows the continuing efforts towards code optimization as reported in earlier works Paz, et al. (2002a,b and 2003). The probabilistic crack approach is based on the direct Monte Carlo method. Cracking is accounted by means of 3D interface elements. This approach considers that all nonlinearities are restricted to interface elements modeling cracks. The heterogeneity governs the overall cracking behavior and related size effects on concrete fracture. Computational kernels in the implementation are the inexact Newton iterative driver to solve the non-linear problem and a preconditioned conjugate gradient (PCG) driver to solve linearized equations, using an element by element (EBE) strategy to compute matrix-vector products. In particular the paper analyzes code behavior using OpenMP directives in parallel vector processors (PVP), such as the CRAY SV1 and CRAY T94. The impact of the memory architecture on code performance, and also some strategies devised to circumvent this issue are addressed by numerical experiment.

Bond and ductility: a theoretical study on the impact of construction details - part 1: basic considerations

  • Zwicky, Daia
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.103-119
    • /
    • 2013
  • The applicability of limit analysis methods in design and assessment of concrete structures generally requires a certain plastic deformation capacity. The latter is primarily provided by the ductility of the reinforcement, being additionally affected by the bond properties between reinforcing steel and concrete since they provoke strain localization in the reinforcement at cracks. The bond strength of reinforcing bars is not only governed by concrete quality, but also by construction details such as bar ribbing, bar spacing or concrete cover thickness. For new concrete structures, a potentially unfavorable impact on bond strength can easily be anticipated through appropriate code rules on construction details. In existing structures, these requirements may not be necessarily satisfied, consequently requiring additional considerations. This two-part paper investigates in a theoretical study the impacts of the most frequently encountered construction details which may not satisfy design code requirements on bond strength, steel strain localization and plastic deformation capacity of cracked structural concrete. The first part introduces basic considerations on bond, strain localization and plastic deformation capacity as well as the fundamentals of the Tension Chord Model underlying the further investigations. It also analyzes the impacts of the hardening behavior of reinforcing steel and concrete quality. The second part discusses the impacts of construction details (bar ribbing, bar spacing, and concrete cover thickness) and of additional structure-specific features such as bar diameter and crack spacing.

TEMPERATURE CONTROL AND COMPRESSIVE STRENGTH ASSESSMENT OF IN-PLACE CONCRETE STRUCTURES USING THE WIRELESS TEMPERATURE MEASURING SYSTEM BASED ON THE UBIQUITOUS SENSOR NETWORK

  • Ho Kyoo JO;Hyung Rae KIM;Tae Koo KIM
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.794-799
    • /
    • 2009
  • The temperature control of in-place concrete is the most important factor for an early age of curing concrete. Heat stress of mass concrete caused by the heat of hydration can induce the crack of concrete, and a frost damage from cold weather casting concrete results defect on compressive strength and degradation of durability. Therefore, success and failure of concrete work is dependant on the measurement and control of concrete temperature. In addition, the compressive strength assessment of in-place concrete obtained from the maturity calculated from the history of temperature make a reduction of construction cycle time, possible. For that purpose, wireless temperature measuring system was developed to control temperature and assess strength of concrete. And, it was possible to monitor the temperature of concrete over 1km apart from site office and to take a proper measure; mesh-type network was developed for wireless sensor. Furthermore, curing control system that contains the program capable to calculate the maturity of concrete from the history of temperature and to assess the compressive strength of concrete was established. In this study, organization and practical method of developed curing control system are presented; base on in-place application case.

  • PDF

A practical modification to coaxial cables as damage sensor with TDR in obscured structural members and RC piles

  • Mehmet Ozgur;Sami Arsoy
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.2
    • /
    • pp.133-154
    • /
    • 2023
  • Obscured structural members are mostly under-evaluated during condition assessment due to lack of visual inspection capability. Insufficient information about the integrity of these structural members poses a significant risk for public safety. Time domain reflectometry (TDR) is a novel approach in structural health monitoring (SHM). Ordinary coaxial cables "as is" without a major modification are not suitable for SHM with TDR. The objective of this study is to propose a practical and cost-effective modification approach to commercially available coaxial cables in order to use them as a "cable sensor" for damage detection with the TDR equipment for obscured structural members. The experimental validation and assessment of the proposed modification approach was achieved by conducting 3-point bending tests of the model piles as a representative obscured structural member. It can be noted that the RG59/U-6 and RG6/U-4 cable sensors expose higher strain sensitivity in comparison with non-modified "as is" versions of the cables used. As a result, the cable sensors have the capability of sensing both the presence and the location of a structural damage with a maximum aberration of 3 cm. Furthermore, the crack development can be monitored by the RG59/U-6 cable sensor with a simple calibration.

Development and Assessment of Laboratory Testing Apparatus on Grouting Injection Performance (그라우팅 주입성능 실내실험 장비 개발 및 신뢰도 평가)

  • Jin, Hyunwoo;Ryu, Byunghyun;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.23-31
    • /
    • 2016
  • Grout is generally operated with low viscous material similar to water, but grout for micro crack with high viscous materials and high injection pressure is gradually increased under the development of underground and subsea space. In order to estimate grouting injection performance considering crack width, viscosity of grouting materials, and injection pressure, there should be a reliable standard laboratory testing method. In this paper, theoretical injection mechanisms of grouting materials are presented as radial and linear flows, and laboratory testing apparatus are introduced to simulate each flow case. Radial flow is simulated by using acrylic disk plates which are able to spread grouting material radially from the center of the disk plates, and linear flow is simulated by using stainless parallel plane plates which are able to spread grouting material linearly. Apparatus are consist of upper and lower plates and industrial films with different thickness are placed between plates in order to simulate various crack widths. Laboratory verification tests with these apparatus were conducted with tap water (1cP at $20^{\circ}C$) as an injection material. Through the laboratory testing results, the best laboratory testing method is recommended in order to estimate grouting injection performance.