• Title/Summary/Keyword: coverage accuracy

Search Result 215, Processing Time 0.025 seconds

Matching Method for Ship Identification Using Satellite-Based Radio Frequency Sensing Data

  • Chan-Su Yang;Jaehoon Cho
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.219-228
    • /
    • 2024
  • Vessels can operate with their Automatic Identification System (AIS) turned off, prompting the development of strategies to identify them. Among these, utilizing satellites to collect radio frequency (RF) data in the absence of AIS has emerged as the most effective and practical approach. The purpose of this study is to develop a matching algorithm for RF with AIS data and find the RF's applicability to classify a suspected ship. Thus, a matching procedure utilizing three RF datasets and AIS data was employed to identify ships in the Yellow Sea and the Korea Strait. The matching procedure was conducted based on the proximity to AIS points, ensuring accuracy through various distance-based sections, including 2 km, 3 km, and 6 km from the AIS-based estimated points. Within the RF coverage, the matching results from the first RF dataset and AIS data identified a total of 798 ships, with an overall matching rate of 78%. In the cases of the second and third RF datasets, 803 and 825 ships were matched, resulting in an overall matching rate of 84.3% and 74.5%, respectively. The observed results were partially influenced by differences in RF and AIS coverage. Within the overlapped region of RF and AIS data, the matching rate ranged from 80.2% to 98.7%, with an average of 89.3%, with no duplicate matches to the same ship.

Comparison between in situ Survey and Satellite Imagery with Regard to Coastal Habitat Distribution Patterns in Weno, Micronesia (마이크로네시아 웨노섬 연안 서식지 분포의 현장조사와 위성영상 분석법 비교)

  • Kim, Taihun;Choi, Young-Ung;Choi, Jong-Kuk;Kwon, Moon-Sang;Park, Heung-Sik
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.395-405
    • /
    • 2013
  • The aim of this study is to suggest an optimal survey method for coastal habitat monitoring around Weno Island in Chuuk Atoll, Federated States of Micronesia (FSM). This study was carried out to compare and analyze differences between in situ survey (PHOTS) and high spatial satellite imagery (Worldview-2) with regard to the coastal habitat distribution patterns of Weno Island. The in situ field data showed the following coverage of habitat types: sand 42.4%, seagrass 26.1%, algae 14.9%, rubble 8.9%, hard coral 3.5%, soft coral 2.6%, dead coral 1.5%, others 0.1%. The satellite imagery showed the following coverage of habitat types: sand 26.5%, seagrass 23.3%, sand + seagrass 12.3%, coral 18.1%, rubble 19.0%, rock 0.8% (Accuracy 65.2%). According to the visual interpretation of the habitat map by in situ survey, seagrass, sand, coral and rubble distribution were misaligned compared with the satellite imagery. While, the satellite imagery appear to be a plausible results to identify habitat types, it could not classify habitat types under one pixel in images, which in turn overestimated coral and rubble coverage, underestimated algae and sand. The differences appear to arise primarily because of habitat classification scheme, sampling scale and remote sensing reflectance. The implication of these results is that satellite imagery analysis needs to incorporate in situ survey data to accurately identify habitat. We suggest that satellite imagery must correspond with in situ survey in habitat classification and sampling scale. Subsequently habitat sub-segmentation based on the in situ survey data should be applied to satellite imagery.

Principles for evaluating the clinical implementation of novel digital healthcare devices (첨단 디지털 헬스케어 의료기기를 진료에 도입할 때 평가원칙)

  • Park, Seong Ho;Do, Kyung-Hyun;Choi, Joon-Il;Sim, Jung Suk;Yang, Dal Mo;Eo, Hong;Woo, Hyunsik;Lee, Jeong Min;Jung, Seung Eun;Oh, Joo Hyeong
    • Journal of the Korean Medical Association
    • /
    • v.61 no.12
    • /
    • pp.765-775
    • /
    • 2018
  • With growing interest in novel digital healthcare devices, such as artificial intelligence (AI) software for medical diagnosis and prediction, and their potential impacts on healthcare, discussions have taken place regarding the regulatory approval, coverage, and clinical implementation of these devices. Despite their potential, 'digital exceptionalism' (i.e., skipping the rigorous clinical validation of such digital tools) is creating significant concerns for patients and healthcare stakeholders. This white paper presents the positions of the Korean Society of Radiology, a leader in medical imaging and digital medicine, on the clinical validation, regulatory approval, coverage decisions, and clinical implementation of novel digital healthcare devices, especially AI software for medical diagnosis and prediction, and explains the scientific principles underlying those positions. Mere regulatory approval by the Food and Drug Administration of Korea, the United States, or other countries should be distinguished from coverage decisions and widespread clinical implementation, as regulatory approval only indicates that a digital tool is allowed for use in patients, not that the device is beneficial or recommended for patient care. Coverage or widespread clinical adoption of AI software tools should require a thorough clinical validation of safety, high accuracy proven by robust external validation, documented benefits for patient outcomes, and cost-effectiveness. The Korean Society of Radiology puts patients first when considering novel digital healthcare tools, and as an impartial professional organization that follows scientific principles and evidence, strives to provide correct information to the public, make reasonable policy suggestions, and build collaborative partnerships with industry and government for the good of our patients.

Analysis of Geometric and Spatial Image Quality of KOMPSAT-3A Imagery in Comparison with KOMPSAT-3 Imagery

  • Erdenebaatar, Nyamjargal;Kim, Jaein;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • This study investigates the geometric and spatial image quality analysis of KOMPSAT-3A stereo pair. KOMPSAT-3A is, the latest satellite of KOMPSAT family, a Korean earth observation satellite operating in optical bands. A KOMPSAT-3A stereo pair was taken on 23 November, 2015 with 0.55 m ground sampling distance over Terrassa area of Spain. The convergence angle of KOMPSAT-3A stereo pair was estimated as $58.68^{\circ}$. The investigation was assessed through the evaluation of the geopositioning analysis, image quality estimation and the accuracy of automatic Digital Surface Model (DSM) generation and compared with those of KOMPSAT-3 stereo pair with the convergence angle of $44.80^{\circ}$ over the same area. First, geopositioning accuracy was tested with initial rational polynomial coefficients (RPCs) and after compensating the biases of the initial RPCs by manually collected ground control points. Then, regarding image quality, relative edge response was estimated for manually selected points visible from two stereo pairs. Both of the initial and bias-compensated positioning accuracy and the quality assessment result expressed that KOMPSAT-3A images showed higher performance than those of KOMPSAT-3 images. Finally, the accuracy of DSMs generated from KOMPSAT-3A and KOMPSAT-3 stereo pairs were examined with respect to the reference LiDAR-derived DSM. The various DSMs were generated over the whole coverage of individual stereo pairs with different grid spacing and over three types of terrain; flat, mountainous and urban area. Root mean square errors of DSM from KOMPSAT-3A pair were larger than those for KOMPSAT-3. This seems due to larger convergence angle of the KOMPSAT-3A stereo pair.

Development of Kimchi Cabbage Growth Prediction Models Based on Image and Temperature Data (영상 및 기온 데이터 기반 배추 생육예측 모형 개발)

  • Min-Seo Kang;Jae-Sang Shim;Hye-Jin Lee;Hee-Ju Lee;Yoon-Ah Jang;Woo-Moon Lee;Sang-Gyu Lee;Seung-Hwan Wi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.366-376
    • /
    • 2023
  • This study was conducted to develop a model for predicting the growth of kimchi cabbage using image data and environmental data. Kimchi cabbages of the 'Cheongmyeong Gaual' variety were planted three times on July 11th, July 19th, and July 27th at a test field located at Pyeongchang-gun, Gangwon-do (37°37' N 128°32' E, 510 elevation), and data on growth, images, and environmental conditions were collected until September 12th. To select key factors for the kimchi cabbage growth prediction model, a correlation analysis was conducted using the collected growth data and meteorological data. The correlation coefficient between fresh weight and growth degree days (GDD) and between fresh weight and integrated solar radiation showed a high correlation coefficient of 0.88. Additionally, fresh weight had significant correlations with height and leaf area of kimchi cabbages, with correlation coefficients of 0.78 and 0.79, respectively. Canopy coverage was selected from the image data and GDD was selected from the environmental data based on references from previous researches. A prediction model for kimchi cabbage of biomass, leaf count, and leaf area was developed by combining GDD, canopy coverage and growth data. Single-factor models, including quadratic, sigmoid, and logistic models, were created and the sigmoid prediction model showed the best explanatory power according to the evaluation results. Developing a multi-factor growth prediction model by combining GDD and canopy coverage resulted in improved determination coefficients of 0.9, 0.95, and 0.89 for biomass, leaf count, and leaf area, respectively, compared to single-factor prediction models. To validate the developed model, validation was conducted and the determination coefficient between measured and predicted fresh weight was 0.91, with an RMSE of 134.2 g, indicating high prediction accuracy. In the past, kimchi cabbage growth prediction was often based on meteorological or image data, which resulted in low predictive accuracy due to the inability to reflect on-site conditions or the heading up of kimchi cabbage. Combining these two prediction methods is expected to enhance the accuracy of crop yield predictions by compensating for the weaknesses of each observation method.

정지궤도 통신해양기상위성 기술특성 분석

  • Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.89-95
    • /
    • 2003
  • In this study, the technical characteristics of geosynchronous multi-mission satellites are investigated, compared to communication satellites. Geosynchronous meteorological satellites, whose imaging data is normally shared with the international society, have large coverage for monitoring and data service. Also the higher pointing accuracy is requested to keep the spatial resolution of 1-4km, compared to those of communication satellites. Cryogenic thermal control is needed for the better performance of IR sensors and the contamination protection of optical parts should be considered. On the other hands, for the successful development of the multi-mission satellite COMS, which will be launched in 2008, the special features of attitude control, electrical power, thermal control and mechanism are investigated.

  • PDF

Development of a WPAN-based Self-positioning System for Indoor Flying Robots (실내 비행 로봇을 위한 WPAN 기반 자가 측위 시스템 개발)

  • Lim, Jeong-Min;Jeong, Won-Min;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.490-495
    • /
    • 2015
  • As flying robots are becoming popular, there are increased needs to use themforsuch purposes as parcel delivery, serving in restaurants, and stage performances. To control flying robots such as quad copters, localization is essential. In order to properly position flying robots, many techniques are in development, including IR (infra-red)-based systemswhich catch markers on a flying robot in order that it can position itself. However, this technique demonstrates only short coverage. Furthermore, localization from inertial sensors diverges as time passes. For this reason, this paper suggests a TWR (two-way ranging) based positioning technique. Despite the weaknesses in currently available TWR system, this paper suggests a self-positioning and outlier detection technique in order to provide reliable position information with a faster update rate. The self-positioning system sends a shorter message which reduces wireless traffic. By detecting and removing outlier measurements, a positioning result with better accuracy is acquired. Finally, this paper shows that the suggesting system detects outlierssequentially from less than half the number of anchors in localization system according to the degree of outlier in measurement and the noise level. By performing an outlier algorithm, better positioning accuracy is acquired as shown in the experimental result.

Establishment of Priority Update Area for Land Coverage Classification Using Orthoimages and Serial Cadastral Maps

  • Song, Junyoung;Won, Taeyeon;Jo, Su Min;Eo, Yang Dam;Park, Jin Sue
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.763-776
    • /
    • 2021
  • This paper introduces a method of selecting priority update areas for subdivided land cover maps by training orthoimages and serial cadastral maps in a deep learning model. For the experiment, orthoimages and serial cadastral maps were obtained from the National Spatial Data Infrastructure Portal. Based on the VGG-16 model, 51,470 images were trained on 33 subdivided classifications within the experimental area and an accuracy evaluation was conducted. The overall accuracy was 61.42%. In addition, using the differences in the classification prediction probability of the misclassified polygon and the cosine similarity that numerically expresses the similarity of the land category features with the original subdivided land cover class, the cases were classified and the areas in which the boundary setting was incorrect and in which the image itself was determined to have a problem were identified as the priority update polygons that should be checked by operators.

Deep neural network based seafloor sediment mapping using bathymetric features of MBES multifrequency

  • Khomsin;Mukhtasor;Suntoyo;Danar Guruh Pratomo
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.101-114
    • /
    • 2024
  • Seafloor sediment mapping is an essential research topic in shallow coastal waters, especially in port development, benthic habitat mapping, and underwater communications. The seafloor sediments can be interpreted by collecting sediment samples directly in the field using a grab sampler or corer. Another method is optical, especially using underwater cameras and videos. Both methods each have weaknesses in terms of area coverage (mechanic) and accurate positioning (optic). The latest technology used to overcome it is the acoustic method (echosounder) with Global Navigation Satellite System (GNSS) Real Time Kinematic (RTK) positioning. Therefore, in this study will propose the classification of seafloor sediments in coastal waters using acoustic method that is Multibeam Echosounder (MBES) multi-frequency with five frequency (200 kHz, 250 kHz, 300 kHz, 350 kHz, and 400 kHz). In this study, the deep neural network (DNN) used the bathymetric multi frequency, bathymetric difference inters frequencies, and bathymetric features from 5 (five) frequencies as input layer and 4 (four) sediment types in 74 (seventy-four) sample sediment as output layer to make a seafloor sediment map. Results of sediment mapping using the DNN method show an overall accuracy of 71.6% (significant) and a kappa coefficient of 0.59 (moderate). The distribution of seafloor sediment in the study area is mainly silt (41.6%), followed by clayey sand (36.6%), sandy silt (14.2%), and silty sand (7.5%).

Analysis of Loran-C Signal Quality in the Eastern Sea Area, Republic of Korea (동해권역 Loran-C 신호품질 분석)

  • Bae, Kyu-Man;Lim, Young-Man
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.190-192
    • /
    • 2017
  • The manufacture of current Loran-C signal receiver has been discontinued and there are no spare parts for that. eLoran system is being developed. Judging from these facts, it is necessary to purchase eLoran receivers which also can receive Loran-C signal. Furthermore, the coverage of Loran-C has been decreased as the closure of transmitting stations in Japan. The current monitor station in Ganjeolgot, Ulsan shall be moved to a new place.

  • PDF