• Title/Summary/Keyword: coverage accuracy

Search Result 212, Processing Time 0.025 seconds

Bootstrap Confidence Intervals of the Process Capability Index Based on the EDF Expected Loss (EDF 기대손실에 기초한 공정능력지수의 붓스트랩 신뢰구간)

  • 임태진;송현석
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.4
    • /
    • pp.164-175
    • /
    • 2003
  • This paper investigates bootstrap confidence intervals of the process capability index(PCI) based on the expected loss derived from the empirical distribution function(EDF). The PCI based on the expected loss is too complex to derive its confidence interval analytically, so the bootstrap method is a good alternative. We propose three types of the bootstrap confidence interval; the standard bootstrap(SB), the percentile bootstrap(PB), and the acceleration biased­corrected percentile bootstrap(ABC). We also perform a comprehensive simulation study under various process distributions, in order to compare the accuracy of the coverage probability of the bootstrap confidence intervals. In most cases, the coverage probabilities of the bootstrap confidence intervals from the EDF PCI turned out to be more accurate than those from the PCI based on the normal distribution. It is expected that the bootstrap confidence intervals from the EDF PCI can be utilized in real processes where the true distribution family may not be known.

An Efficient Method of Estimating Confidence Intervals for Use in Simulation-Optimization

  • Lee, Young-Hae;Azadivar, Farhad
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.2
    • /
    • pp.229-244
    • /
    • 1994
  • In many applications of simulation-optimization, when comparing two or more alternatives, it is crucial to be able to estimate the confidence intervals on the outputs of interest with a reasonable level of accuracy. This acuracy has often been tested by the closeness of the coverage of the estimated confidence interval to the intended coverage. In this paper two variations to the Batch-Means Method of estimating the confidence intervals are presented and their performance are compared with the original method. The results indicate that the Batch Means Method modified by factors obtained by a second order autoregressive method is superior to the original and the one modified based on factors obtained from autocorrelation analysis.

  • PDF

Fundamental Considerations: Impact of Sensor Characteristics, Application Environments in Wireless Sensor Networks

  • Choi, Dongmin;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.441-457
    • /
    • 2014
  • Observed from the recent performance evaluation of clustering schemes in wireless sensor networks, we found that most of them did not consider various sensor characteristics and its application environment. Without considering these, the performance evaluation results are difficult to be trusted because these networks are application-specific. In this paper, for the fair evaluation, we measured several clustering scheme's performance variations in accordance with sensor data pattern, number of sensors per node, density of points of interest (data density) and sensor coverage. According to the experiment result, we can conclude that clustering methods are easily influenced by POI variation. Network lifetime and data accuracy are also slightly influenced by sensor coverage and number of sensors. Therefore, in the case of the clustering scheme that did not consider various conditions, fair evaluation cannot be expected.

Efficient Extraction of Hierarchically Structured Rules Using Rough Sets

  • Lee, Chul-Heui;Seo, Seon-Hak
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.205-210
    • /
    • 2004
  • This paper deals with rule extraction from data using rough set theory. We construct the rule base in a hierarchical granulation structure by applying core as a classification criteria at each level. When more than one core exist, the coverage is used for the selection of an appropriate one among them to increase the classification rate and accuracy. In Addition, a probabilistic approach is suggested so that the partially useful information included in inconsistent data can be contributed to knowledge reduction in order to decrease the effect of the uncertainty or vagueness of data. As a result, the proposed method yields more proper and efficient rule base in compatability and size. The simulation result shows that it gives a good performance in spite of very simple rules and short conditionals.

VaR Estimation via Transformed GARCH Models (변환된 GARCH 모형을 활용한 VaR 추정)

  • Park, Ju-Yeon;Yeo, In-Kwon
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.6
    • /
    • pp.891-901
    • /
    • 2009
  • In this paper, we investigate the approach to estimate VaR under the transformed GARCH model. The time series are transformed to approximate to the underlying distribution of error terms and then the parameters and the one-sided prediction interval are estimated with the transformed data. The back-transformation is applied to compute the VaR in the original data scale. The analyses on the asset returns of KOSPI and KOSDAQ are presented to verify the accuracy of the coverage probabilities of the proposed VaR.

O-JMeSH: creating a bilingual English-Japanese controlled vocabulary of MeSH UIDs through machine translation and mutual information

  • Soares, Felipe;Tateisi, Yuka;Takatsuki, Terue;Yamaguchi, Atsuko
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.26.1-26.3
    • /
    • 2021
  • Previous approaches to create a controlled vocabulary for Japanese have resorted to existing bilingual dictionary and transformation rules to allow such mappings. However, given the possible new terms introduced due to coronavirus disease 2019 (COVID-19) and the emphasis on respiratory and infection-related terms, coverage might not be guaranteed. We propose creating a Japanese bilingual controlled vocabulary based on MeSH terms assigned to COVID-19 related publications in this work. For such, we resorted to manual curation of several bilingual dictionaries and a computational approach based on machine translation of sentences containing such terms and the ranking of possible translations for the individual terms by mutual information. Our results show that we achieved nearly 99% occurrence coverage in LitCovid, while our computational approach presented average accuracy of 63.33% for all terms, and 84.51% for drugs and chemicals.

Development and performance evaluation of GPS/PL simulator for UAV landing (무인항공기 착륙용 GPS/PL 시뮬레이터 설계 및 성능 평가)

  • Lee, Geon-Woo;Kim, Yong-Hyun;Choi, Jin-Gyu;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.39-47
    • /
    • 2008
  • Automatic landing performance of UAV can be enhanced by adding Pseudolite(PL) to GPS. However, it is very hard to install and operate PL with confidence because GPS satellites are moving and the landing zone are usually changeable. The coverage and accuracy of combined GPS and PL can be estimated by using simulator and the correct information is very crucial to UAV operation. In this paper, design, implementation and evaluation of GPS/PL simulator for UAV landing are given. A very realistic coverage estimation is obtained using GIS data and ray launching method with considerations of the transmitter power level, altitude of UAV, number and location of PL. The expected accuracy is estimated using DOP and NSP computed using both GPS and PL. The performance of simulator is evaluated by comparing with the results of a real GPS receiver, and the certified simulator shows the required accuracy for UAV landing can be easily met by proper installation of at least 2 PLs.

Prediction of eLoran Positioning Accuracy with Locating New Transmitter

  • Han, Younghoon;Park, Sang-Hyun;Seo, Ki-Yeol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.53-57
    • /
    • 2017
  • eLoran refers to a terrestrial navigation system using high-power low-frequency signals. Thus, it can be regarded as a positioning, navigation and timing (PNT) system to back up a global navigation satellite system (GNSS) or an alternative to GNSS. South Korea is vulnerable to interference such as GNSS jamming in particular. Therefore, South Korea has made an effort to develop an independent navigation system through eLoran system. More particularly, an eLoran testbed has been developed to be used in the northwest sea area and research on applicability of eLoran in South Korea has been underway. The present study analyzes expected performance of eLoran according to locations of newly built eLoran transmitting stations as part of the eLoran testbed research. The performance of eLoran is analyzed in terms of horizontal position accuracy, and horizontal dilution of precision (HDOP) information was used since it affects accuracy significantly. The target service areas of the eLoran testbed are Incheon and Pyeongtaek Ports, and the required target performance is positioning accuracy of 20 m position within 30 km coverage of the target service area.

Coverage Prediction for Aerial Relay Systems based on the Common Data Link using ITU Models (ITU 모델을 이용한 공용데이터링크 기반의 공중중계 시스템의 커버리지 예측)

  • Park, Jae-Soo;Song, Young-Hwan;Choi, Hyo-Gi;Yoon, Chang-Bae;Hwang, Chan-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.21-30
    • /
    • 2020
  • In this paper, we predicted the propagation loss for the air-to-ground (A2G) channel between the ground control system and the unmanned aerial vehicle (UAV) using the prediction model for the aircraft recommended by the International Telecommunication Union (ITU). We analyzed the network coverage of the aerial relay system based on the medium altitude UAVs by expanding it into the air-to-air (A2A) channel. Climate and geographic factors in Korea were used to predict propagation loss due to atmospheres. We used the measured data published by the Telecommunication Technology Association (TTA) for regional rainfall-rate and effective earth radius factors to increase accuracy. In addition, the aerial relay communication system used the key parameter of the common data link (CDL) system developed in Korea recently. Prediction results show that the network coverage of the aerial relay system broadens at higher altitude.

Modeling and SINR Analysis of Dual Connectivity in Downlink Heterogeneous Cellular Networks

  • Wang, Xianling;Xiao, Min;Zhang, Hongyi;Song, Sida
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5301-5323
    • /
    • 2017
  • Small cell deployment offers a low-cost solution for the boosted traffic demand in heterogeneous cellular networks (HCNs). Besides improved spatial spectrum efficiency and energy efficiency, future HCNs are also featured with the trend of network architecture convergence and feasibility for flexible mobile applications. To achieve these goals, dual connectivity (DC) is playing a more and more important role to support control/user-plane splitting, which enables maintaining fixed control channel connections for reliability. In this paper, we develop a tractable framework for the downlink SINR analysis of DC assisted HCN. Based on stochastic geometry model, the data-control joint coverage probabilities under multi-frequency and single-frequency tiering are derived, which involve quick integrals and admit simple closed-forms in special cases. Monte Carlo simulations confirm the accuracy of the expressions. It is observed that the increase in mobility robustness of DC is at the price of control channel SINR degradation. This degradation severely worsens the joint coverage performance under single-frequency tiering, proving multi-frequency tiering a more feasible networking scheme to utilize the advantage of DC effectively. Moreover, the joint coverage probability can be maximized by adjusting the density ratio of small cell and macro cell eNBs under multi-frequency tiering, though changing cell association bias has little impact on the level of the maximal coverage performance.