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An Efficient Method of Estimating Confidence
Intervals for Use in Simulation-Optimization

Young-Hae Lee* and Farhad Azadivar*™

Abstract

In many applications of simulation-optimization, when comparing two or more alternatives, it is
crucial to be able to estimate the confidence intervals on the outputs of interest with a reasonable
level of accuracy. This accuracy has often been tested by the closeness of the coverage of the
estimated confidence interval to the intended coverage. In this paper two variations to the
Batch-Means Method of estimating the confidence iulervals are presented and their performances are
compared with the original method. The results indicate that the Batch Means Method modified by
factors obtained by a second order autoregressive method is superior to the original and the one

modified based on factors obtained from autocorrelaiion analysis.

1. Introduction

Let {X. i>1} be a stochastic process resulted from a simulation output analysis with a

steady —state mean, gu. That is:

u = lim _Zl E(X.m = Iim E"Y. X.n] (1)
w1 H— L i=1
Consider the problem of estimating the confider.ce interval for the steady —state mean, u where
there is enough time such that n observations for the system response can be obtained from the
running of the simulation model. In most cases, nonstationarity and autocorrelation in output
data from simulation make the correct estimation of confidence intervals difficult. Therefore,

the classical method which assumes that data are from independent and identically distributed
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populations cannot be applied directly.

Two most often used methods, Replication Mithod and Batch Means Method were compared
with each other by Law [6] in terms of the coverages and half lengths of confidence intervals. In
that experiment, it was concluded that the Batch Means Method performed better than the Rep-
lication Method.

In the Batch Means Method in general, after making a large number of observations (n=mXx
x) they are divided into k batches, each with length of m, such that the batch means are
approximately independent. Then confidence intervals are estimated based on these batch means.
The problem in this method is that when there exist autocorrelations between batch means,
coverage becomes smaller than the theoretical value. To overcome this problem, the simulation
model must be run for much longer periods to jprovide enough data for constructing more accu-
rate confidence intervals. However, in simulativn—optimization problems |1,23. and in simu-
lation of complex manufacturing systems [13. a large number of simulation runs are required.
Thus very long simulation runs may not be frasible. Therefore, the autocorrelations between
batch means may not be eliminated.

In this paper two possible modifications to Ba.ch Means Methods are proposed for overcoming
these situations. These are based on the cecond order autoregressive method and the
autocorrelation method based on time series analysis. The results of these methods are then
compared to those of the original Batch Means Method.

The remainder of the paper is organized as follows. In section 2, the details of these modified
methods are described. In section 3, the results of the coverages obtained by testing the methods
on an M/ M/ 1 queuing system are presented ard compared to each other. Section 4 presents

summary and conclusions.

2. Modified Batch Means Methods

In the classical Batch Means Method n simulaiion output data x,, x.---, %, Equation are divided

into k batches of size m and the mean of the output parameter is estimated by

Zem) = L Y,0m) | k (2)

i=

where Y{m) is the mean of the k—th batch. If s"(k.m) is the sample variance for Y (m) and ¢-

[Z(k,m)] is the unbiased estimator for variance «f Z{k.m).
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100(1 ~ %)% confidence interval for u can be expressed as

Zkm) = £71., - Vo [ ZUhkm)]

where t1.1,, is 1 —x/ 2 level of t distribution with k—1 degrees of freedom.
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[Figure 10 Flow Chart of Confidence Intervals by Modified Batch Means
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According to Law [6] in this estimation there may exist the following sources of error:

(1) Bias in variance of ¢’[Z(k,m)] if m is not large enough to eliminate the correlations be-
tween batch means,
(2) Nonnormality of Y(m)’s,

(3) Violation of the assumption of covariance stationarity of the process.

Law [7] pointed out that in estimating the confidence interval for an M/ M/ 1 queuing system
with Batch Means Method the bias in variance of ¢”[Z(k.m)] is the most serious source of er-
ror, while nonormality does not pose a significant problem when k is greater than 20.

In the modified methods suggested here, the confidence intervals obtained by the original
Batch Means Method are modified by factors obtained by one of the statistical analyses
suggested below. In each of these cases, first the batch means are checked for independence. This

is done by estimating lag 1 autocorrelation coefficient p,(m).

YL o)~ ZCkom)] [¥ 11 m)~ Z )]
S (Y idm)— Zeam) )

i=

plkom) =

It must be pointed out that for estimating lag 1 autocorrelation coefficient p,(m), Jackknife

estimator p, (£,m) could be used which in general has smaller bias than p;(m)[9].

3 5 bt kI2 )5t k2,
b tkom) = 2 Gy — L RLZ 20D L 2 ) (6)

where p1(k/2 ,m) is an estimator for p,(m) using the first half and g} (4/2 .m), the second
half of k batches.

After checking the correlations between batch means, if there exists no correlation, the classi-
cal formula in equation (4) can be used. Otherwise one of the modified Batch Means Method
which will be explained in the following sections could be employed. This procedure is

summarized in Figure 1.
2.1 Second Order Autoregressive Method
Let us assume that the batch means based on the observed simulation data are correlated but

can appropriately fit an AR(2) model. In this case, the confidence interval calculated by (4) can

be modified as follows.
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ZUm) + i, 2 -t - No'[ZUkem) (7)

where (x,. %) is a modification factor which has been shown to reduce the bias of estimation

of ¢ [ Z(km)] and o, x. are coefficients of AR(2 ) model such that

X o= Xy T oasx . + 0

This modification was originally developed for :alculating the limits for quality control charts
in the presence of data correlation [10].
To estimate x, and @, we use the Recursive Least Squares Method [8]. For this purposes,

AR(2) model is expressed as follows:

X = —CiX%; T CiXeer oV (8)
where ¢, = —a,, ¢: = —a, and v,={. Using state variables, these coefficients can be expressed as
follows :

Cl = [ci,c;) and F] = [~z . —2% 2]

where CT and R7 are transposes of C, and R, respectively. If coefficients are constant, the fol-

lowing expressions hold:

CHI = C: = C
Thus
X = CTRt + Vi

To estimate C; and C, the following recursive alsorithm can be used:

C =0C., + Lt[xt - CtTl Rrj

P R
1+K P R

P = P_ _LzTP/—l

L =
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where L, is a {(2X1) matrix and P, i1s a (2X2) matrix. Initial conditions for this recursive algor-

ithm is set to be as:

C_J = I:O, O]T
P. =[a' OJ

0 d
R; = [_X_w ”xle

where 50 is recommended as an appropriately large value for d.
To estimate modification factor, i(x,, a,) the characteristic equation of AR(2) can be used as

follows [12]:

or

®B) =(1-GB) (1~ G:B =0 (9
where

G = (a + vai + dos) /2

G {or = oi + das) /2.

il

If Gi', G.' are solutions to the characteristic equation in (9) and AG;. G.)=/(x,. x.) depending

on values of G,'. G.', there could exist three diffirent cases for AG,, G.) as follows [10:

(1) G7', G>' have different real values (o) +4x. > 0);

f(G1,G2) =P - Q

Where P = l‘Gl(l ‘Gé)} ]; : (Glfc_') (1 +GlG3): X q)(GV)
Q = {G.(1 =G /G, ~G.) (1 +G G x D(G.)

and ®G) = [(1+G) /(1 -G — [(2GK)(1 -GY [ (1 -]
(k: number of batches)
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(2) G,'. G.' have the same values (x +da_=10):

(G, G = KiG) — K.(G) xT

i

where K (G) (1+G) /(1 -G)
K .(G) (2GH) (1 =G (1 —G)*)
T =1 + H1L+G (1 -GY — K1 -G 1+GH 1L +G) (1 =G

(3) G,', G.' have imaginary values (x;+4x. <1 ):

fG.G) = P.Q +i2dik X {R/S

where P = 1 — d' + 2d(1 —d") cosw
Q = (1+d)(1+d —2d cosw)

R =R + R
R. = 2d(1 +d")sinm — (1 +dYsin 2w - 4" sin(k—2)
R, = 24" sin(k— 1)o — 247" sinlk— 1) + & sinlk+2)w
S = (14+d1 +d"—2dcosw)” sinw
where d = —a..cosw = a2,/ 2d
sinm =  —a— 4 ; 2d
tanw = \t; - —11_ Doy

O —

@ = tan ' {4 S oay ]

2.2 Autocorrelation Method

When the output data is correlated s’(k,m) is u biased estimator of the variance of Y m). The

expected value of s*(km) can be expressed as follows [7,11]:

ko1
Els*km)] = o 11 =2 L (1 —jiklp; | k= L)}

(10)
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where p; is lag j autocorrelation coefficient. The variance for grand sample mean Z(km) can

then be expressed as follows:

k-1
‘ 142 (1 i
o’ [ Zkm)] = o’ i

(1D

From equation (10) and (11) the expected value of the estimator for variance of grand sample

mean Z(k,m) can be expressed as follows:

Eic*[Z(km)]y = El[s*(km)ik]

o

¢ k= (1 =7k p;
= 0 . — ) A
R Sy

2 P
=G LAk-1-2 L (A—jlkp]

- k—a(k,m) . ¢
Kk—1) ¢
_ kiakm)—1 . alkm.
-1 k
lalkem =L L 0 [ Z(km))

= blkom) - o° [Zkam)]

k=1
where alkem) = 1+2 ¥ (1 —jik)p,

71

b(k,m) = [/f /a/g/i:”{)_ 1i '

From equation (12)

4 _ Shm) 1
¢ [ Zeom)] = r ..
.;V;[Yi(m)—z(k’m)] 1
_ Kk—1) )

Lag j autocorrelation coefficient can be estimated by the following equation :

.46
b s kom)
where
e
_Zl Yim)—Zkm)] [Y jm)— Z{kom)]
¢ -5

k—j

(12)

(13)
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In the Autocorrelation Method which considers correlations between the means, the formula for
calculating 100(1— x)% confidence interval for y is the same as one in equation (4) except that
equation (13) is used to estimate o’[ Z(k,m)].

When data are positively autocorrelated, the value of a(k,m) is greater than 1 while b(km) is
less than 1. Thus the calculated variance becomes larger than the value obtained without con-
sidering correlation and thereby, the confidence interval becomes wider. That is, if data are posi-
tively autocorrelated, the actual value of variance is larger than the one estimated by using s°(%.
mik.

The only problem with this method is that the accuracy of estimation of correlation

coefficients is decreased when k is very small or lag j is relatively large compared to k.

3. Comparison of Methods

To compare the Modified Batch Means Method based on the second order autoregressive
method and the autocorrelation method developed in section 2 with the original Batch Means
Method, a large number of experiments were conducted on an M/M/1 queuing system with
various values of traffic intensity. As traffic intensity increases, so does the correlation between
observed output data. In these experiments, random numbers {U;, i=1} were generated based on

the Linear Congruential Method using the following formula [7]:

X, = (3" X,-, + D mod 35846594356784
U, = X,/ 35846594356734 (15)

where X, was given.

Let D, be the waiting time for the i—th customer which excludes service time and assumes
that the system starts empty and idle, i. e. 0,=0. To estimate mean waiting time w, at
steady —state data for | D, i>1; are obtained through simulation experiments. Theoretically, the
true means are 1.633, 3.2, and 8. for traffic intensities of p=0.7, 0.8 and 0.9 respectively. Run
lengths, n=320,640,1280 and 2560 and number of batches, k=5, 10, 20 and 40 were used. For each
combination of values for n and k, 200 different runs were conducted and 90% confidence
intervals for each case were estimated using the three different methods, ie. , original Batch
Means Method (BM), Modified Batch Means Method based on the second order autoregressive

method (AR) and the autocorrelation method (AC). Coverages were also estimated by calculat -
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ing the percentage of intervals that actually included the true mean. The detailed results for
coverages and half lengths of confidence intervals are shown in Table 1 through 3 for each value
of p. Figures 2 through 5 show coverage vs. nuinber of batches, k for p=0.7, 0.5, and 0.9 and
n=1280 and 2560. In Figure 6 coverage vs. p with n=2560 and k=20 is plotted.

From these results the following conclusions can be drawn. In general the results follow the
same pattern as reported in [6]. With increased n, coverages improved and larger batch sizes
provide better coverages. However, a significant lifference is observed in the performance of the
Batch Means Method modified by the second ordsrautoregressive model. In all cases, this modifi-
cation shows a marked improvement in the cover: ge.

Comparing the performance of the eclassical Batch Means Method with the Batch Means
Method modified by autocorrelation, Figures 2 t- 6, doses not indicate that a significant differ-
ence for coverages exists. The reason for this might be that the corrections by this modificalion
might have been offset by the errors in estimatinz the correlation factors.

Figure 6 shows another interesting result. Accirding to this figure the coverages by all three
methods improve as the traffic intensity and corseguently the correlation among data increases.
This improvement is more pronounced for the classical Batch Means Method and the Batch
Means Method modified by autocorrelation factors. This indicates that in these two cases as
correlation within the data increases, the effect »f modification factors is more than the errors
induced by their estimation. However, a more iraportant conclusion is that the Batch Means
Method modified by the second order autoregressive model is less sensitive to the level of depen-
dence in the output data compared to the other two methods.

Finally, Tables 2, 3 and 4 show that the conidence intervals are wider for higher levels of
coverages. This is understandabie because the nirmber of observations have been kept the same
for all three methods. The choice of which alterrative to choose should be obvious, because one
would prefer a wider confidence interval with a :overage closer to the intended theoretical value

to a narrower interval erroneously claiming a rea.onable coverage.
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(Table 1> Coverages and Half Lengths for 90% Ccnfidence Intervais for an M/ M/ 1 with p=0.9

k 5 10 20 40

n C H.L C H.L C H.L C H.L
BM 0.460 3.080 (0.340 2.096 0.280 1.48%8 0.200 1.059

320 AR 0.520 3.808 0.505 3.479 0.540 379 0.530 3.764
AC 0.395 2.694 0.320 2.151 0.290 1.581 0.200 1110

BM 0.585 3.346 0.510 2431 0.430 1.812 0.310 1.303

640 AR 0.720 4.616 0.685 4.372 0.745 4.744 0.740 4912
AC 0.550 2.359 0.500 2.493 0.430 1.882 0.310 1.358

BM 0.825 2.665 0.780 2.206 0.695 1.829 0.310 1.358

1280 AR (1.865 3.700 0.910 4.582 0.875 4.995 0.885 4.604
AC 0.775 2.343 0.765 2.141 (.705 1.851 0.575 1.399

BM 0.860 1.909 0.885 A 1.789 (1.835 1.595 0.780 1.342

2560 AR 0.925 2.981 0.890 3.843 0.965 4.300 0.960 3.8354
AC 0.825 1.695 0.880 1.706 0.840 1.580 0.790 1.353
(Table 2) Coverages and Half Lengths for 30% Confidence Intervals for an M/ M/ 1 with p=0.8

T k 5 1t 20 40
~._

n I C H.L ¢ R.L C H.L C H.L
BM (.475 1.304 0.415 ) 1.002 0.295 0.760 0.210 0.564

320 AR (1.580 1.708 (.585 1.730 0.590 1.874 0.620 1.875
AC 0.420 1.156 0.405 h 1.001 0.310 0.786 0.225 0.582

BM 0.252 1.310 0.505 ) 1.095 0.430 0.860) 0.380 (1.652

640 AR 0.635 L7703 0.700 1.854 0.730 2194 0.700 2.143
AC n)iifa() 1.151 0515 1.082 0.430 4.874 0.385 0.671

BM (.8340 1.077 0.830 0.950 0.710 0.832 .495 0.650

1280 AR Lol 1.488 0.905 1.999 0.915 1.880 0.920 1.765
} AC 0.800 0.940 0.800) 0.921 0.710 (1.832 0.515 0,657
BM 0.520 0.640 .54 0.616 0.520 0.593 0.450 0.533

2560 AR 0.750 0.946 0.835 1.316 0.910 1.380 0.910 1.208
AC 0.460 0.573 0470 0.590 0.485 0.586 0.450 (.534
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{Table 3) Coverages and Half Lengths for 90%; Confidence Intervals for an M/ M/ 1 with p=0.7

k 5 10 20 40
T
n C H.L C H.L C H.L C H.L
BM 0.630 0.619 0.560 0.526 0.500 0.429 0.400 0.335
320 AR 0.790 0.838 0.745 0.910 0.815 0.956 0.310 0.948
AC 0.595 0.551 0.560 0.518 0.495 0.433 0.400 0.342
BM 0.685 0.507 0.640 0.426 0.575 0.379 0.525 0.317
640 AR 0.860 0.691 0.810 0.802 0.920 0.092 0.905 0.832
AC 0.635 0.448 0.630 0.420 0.580 0.382 0.530 0.321
BM 0.540 0.282 0.450 0.255 0.450 0.234 0.425 0.218
1280 AR 0.820 0.430 0.780 0.550 0.865 0.658 0.795 0.469
AC 0.460 0.247 0.435 0.245 0.450 0.233 0.430 0.210
BM 0.230 0.143 0.265 0.167 0.265 0.163 0.250 0.156
2560 AR 0.320 0.215 0.805 0.398 0.845 0.468 0.720 0.473
AC 0.205 0.129 0.260 0.160 0.255 0.160 0.250 0.153
1 -
C
o0 9 t
v —o— AR
e0.8 F —g— BM
r —4— AC
ag. 7t —&—True Value
g
€0.6 t
0.5 . .
0 5 10 20 40 50

{Figure 2] Coverage of Estimated Confidence Intervals When p=0.9, n=1280
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1 -
c i /‘*
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—— AR
V0.9t g\ £ = 13} BM
e &7
r i —a—AC
a —o—True Value
g 0.8
e
0.7 -
0 5 10 20 40 50

[Figure 3] Coverage of Estimated Confidence Intervals When p=0.39, n =2560

1 -

€0.9 c e 6——8
0 —o—AR
V0.8 BN
ro.7} —A—AC
a - —o— True Value
g 0.6
e

0.5

0.4 : -

0 5 10 20 40 50

[Figure 4] Coverage of Estimated Confidence Intervals When p=0.8, n=2560
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[Figure 5] Coverage of Estimated Coniidence intervals When p=0.7, n=2560
lr e
c0.9} 2/0/“ —o
o / —e— AR
e 0.7} i —g— BM
r0.6 | —a&— AC
ag st —a—- True Value
g !
e 0.4 [
0.3
0. 2 . 1 N 5 " Il " 2
0.6 0.7 0.8 0.9 50
P
[Figure 6  Coverage vs. Various values of p When n=2560, x=20
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4. Conclusions

In this paper the performances of the Batch Means Method of estimating the confidence
intervals on the output of simulation experiments and two modifications to this method were
evaluated based on tests on an M/M/1 queuing system. One modified method modifies the con-
fidence intervals based on the autocorrelation factors estimated from data. The other method
modifies the confidence intervals based on coefficients of a second order autoregressive model fit-
ted to the data.

The results indicate that autoregressive modification performed consistently better than the
original Batch Means Method and the one modificd by autocorrelation factors. The difference be-
tween the other two methods was insignificant. Also, it was shown that the performance of all
methods improves as the autocorrelation within the output data increases while second order

autoregressive model is less sensitive to this variition than the other two methods.
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