• 제목/요약/키워드: coupling model

Search Result 1,411, Processing Time 0.036 seconds

A Similarity Solution for the Directional Casting of Peritectic Alloys in the Presence of Shrinkage-Induced Flow (체적수축유동이 있는 포정합금의 방향성주조에 대한 상사해)

  • Yu, Ho-Seon;Jeong, Jae-Dong;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.485-495
    • /
    • 2001
  • This paper presents a similarity solution for the directional casting of binary peritectic alloys in the presence of shrinkage-induced flow. The present model retains essential ingredients of alloy solidification, such as temperature-solute coupling, macrosegregation, solid-liquid property differences, and finite back diffusion in the primary phase. An algorithm for simultaneously determining the peritectic and liquidus positions is newly developed, which proves to be more efficient and stable than the existing scheme. Sample calculations are performed for both hypo- and hyper-peritectic compositions. The results show that the present analysis is capable of properly resolving the solidification characteristics of peritectic alloys so that it can be used for validating numerical models as a test solution.

저합금강판의 열간프레스성형에 따른 상변태 전산 해석

  • Bok, Hyeon-Ho;Kim, Hun-Dong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • Recently, hot stamping process has been paid attention greatly by automobile makers in accordance with the fuel efficiency and environmental issues as well as crash safety issue. The hot-stamped parts, however, demand extreme mechanical properties such as tensile strength of over 1470 MPa or equivalently Vickers hardness of around 450. In this work, to meet the demand efficiently, a method to predict mechanical property of hot-stamped parts based on numerical phase transformation scheme has been proposed associated with the thermo-mechanical coupled finite element analysis. This work deals with various phase transformation equations and validates them to select appropriate model for 0.2C-0.1Si-1.4Mn-0.5Cr-0.01Mo-0.002B steel sheet. The authors show that an efficient method saving time and cost to develop hot-stamped automobile parts ensuring suitable mechanical properties such as Vickers hardness and strength.

  • PDF

Modeling and Analysis of Wind Turbine Generating System at Haeng-Won in Jeju Island (제주 행원 풍력발전 시스템의 모델링 및 해석)

  • Jeon Young-Jin;Kim Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.563-566
    • /
    • 2002
  • This paper presents the modeling and analysis of wind turbine generating system(WTGS) using doubly fed induction machine as a generator Generally, wind turbine generating system is composed of complicated machinery. So it is very difficult to present the mathematic model. This means that WTGS has a nonlinear system. Using the real output data from the WTGS for one year, it is simply possible to express the rotor and gear coupling system as a torque generator according to wind speed. Also, the modeling of electrical system can be able to present using the data sheet from the company. To analyze the proposed method, computer simulation using Psim program are presented to support the discussion.

  • PDF

Transient Stability Assessment Using Improved SIME (개선된 SIME법을 이용한 과도 안정도 평가)

  • Lee, Jong-Seock;Ahn, Tae-Hyung;Yang, Jung-Dae;Lee, Byong-Jun;Kwon, Sae-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.258-260
    • /
    • 1999
  • The Single Machine Equivalent(SIME) is a hybrid method resulting from the coupling of a time-domain program with the equal-area criterion. This paper presents the efficient filtering algorithm using improved SIME for Transient Stability Assessment. The main feature of the method is cascading contingency filtering. First contingency filtering is conducted by using the first-swing stability of equivalent One Machine Infinite Bus(OMIB) system. This stability is evaluated by checking its time trajectory. Selected cases through the first step are assessed on the second step using SIME under the detailed model of power systems. The efficiency of the algorithm is tested on PSS/E test system.

  • PDF

Studies on Surface and Gas Reactions in a Catalytically Stabilized Combustor (촉매연소가 지원된 연소기에서의 표면반응과 가스반응에 관한 연구)

  • Seo, Yong-Seog;Yu, Sang-Phil;Jeong, Nam-Jo;Lee, Seung-Jae;Song, Kwang-Sup;Kang, Sung-Kyu
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.287-298
    • /
    • 2003
  • A numerical investigation of a catalytically stabilized thermal (CST) combustor was conducted for a multi-channel catalyst bed, and both the catalyst bed and thermal combustor were simultaneously modeled. The numerical model handled the coupling of the surface and gas reaction in the catalyst bed as well as the gas reaction in the thermal combustor. The behavior of the catalyst bed was investigated at a variety of operating conditions, and location of the flame in the CST combustor was investigated via an analysis of the distribution of CO concentration. Through parametric analyses of the flame position, it was possible to derive a criterion to determine whether the flame is present in the catalyst bed or the thermal combustor for a given inlet condition. The results showed that the maximum inlet temperature at which the flame is located in the thermal combustor increased with increasing inlet velocity.

  • PDF

The Comparison with SAR Patterns of Biological Objects Contacted with Coaxial Waveguide Antenna Using the FDTD Method

  • Koo, S.M.;Kwon, K.H.;Lee, C.W.;Won, C.H.;Kim, M.N.;Cho, J.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.272-275
    • /
    • 1997
  • Noninvasive multifrequency microwave radiometry using coaxial waveguide antenna has been investigated for a homogeneous and our layer human body model. We derived finite-difference time-domain(FDTD) algorithm and equation of MUR and generalized perfectly matched layer(GPML) absorbing boundary conditions(ABCs) in cylindrical coordination. The coupling between coaxial waveguide antenna and a biological object was analyzed by use of the FDTD method using MUR and GPML ABCs to obtain the absorbed power patterns in the media. The specific absorption rates(SAR) distribution which was corresponding to the temperature distribution was calculated in each region by use of the steady-state response in FDTD method. The SAR patterns of FDTD method using MUR ABCs was compared with those of FDTD method using GPML ABCs.

  • PDF

Combined Two-Back Stress Models with Damage Mechanics Incorporated (파손역학이 조합된 이중 후방응력 이동경화 구성방정식 모델)

  • Yun, Su-Jin
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.161-169
    • /
    • 2008
  • In the present work, the two-back stress model is proposed and continuum damage mechanics (CDM) is incorporated into the plastic constitutive relation in order to describe the plastic deformation localization and the damage evolution in a deforming continuum body. Coupling between damage mechanics and isothermal rate independent plasticity is performed using the kinematic hardening rule, which in turn is formulated by combining the nonlinear Armstrong-Frederick rule and the Phillips rule. The numerical analyses are carried out within h deformation theory. It is noted that the damage evolution within a work piece accelerates the plastic deformation localization such that the material with lower hardening exponent results in a rapid shear band formation. Moreover, the results from the numerical analysis reflected closely with the micro-structures around the fractured regime. The effects of the various hardening parameters on deformation localization are also investigated. As the nonlinear strain rate description in the back stress evolution becomes dominant, the strain localization becomes intensified as well as the damage evolution.

Influence of Internal Resonance on Responses of a Spring-Pendulum System under Broad Band Random Excitation (광대역 불규칙 가진력을 받는 탄성진자계의 내부공진효과)

  • 이원경;조덕상
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.86-94
    • /
    • 1997
  • An investigation into the modal interaction of an autoparametric system under broad-band random excitation is made. The specific system examined is a spring-pendulum system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. By means of the Gaussian closure method the dynamic moment equations explaining the random response of the system are reduced to a system of autonomous ordinanary differential equations of the first and second moments. In view of equilibrium solutions of this system and their stability we examine the system responses. The stabilizing effect of system damping is also examined.

  • PDF

An Indirect Method to Monitor Plasma Status in a Transformer Coupled Plasma

  • Yu, Dae-Ho;An, Seung-Gyu;Kim, Ji-Hun;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.216-216
    • /
    • 2011
  • There have been various direct or indirect methods to measure the characteristics of plasma. Comparing to direct method like Langmuir probe method, indirect measurements which give information as some external parameters like current, voltage, or phase are easier to obtain. In this research, an indirect method to measure averaged plasma density in a transformer coupled plasma(TCP) has been proposed and evaluated. With a simple analytic model connecting electrical characteristics to plasma impedance, direct measurement via double Langmuir probe has been performed. This result may play a meaningful role to diagnose TCP or similar plasma sources

  • PDF

Numerical Analysis on Removal Efficiency of Water Droplets in a Curved Vane Mist Eliminator with Consideration of Evaporation and Condensation at Surface of Droplets (액적 표면에서 증발 및 응축을 고려한 곡면 형상 액적 제거장치의 제거 효율에 대한 수치 해석)

  • Song, Dong Keun
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.135-143
    • /
    • 2016
  • Removal of water contents in a gas is needed in industrial field of gas processing related on energy production/conversion, and environmental treatment. Inertial separators are economic devices for separating droplets from the gas stream. For accurate understanding of removal process in a curved vane mist eliminator, a numerical model including turbulent dispersion, evaporation and condensation of water vapor at surface of droplets is required. A two-stage curved vane mist eliminator has been modeled, and fluid flow of mixture of air and water vapor and droplet trajectories were solved simultaneously with taking into account two-way coupling. Removal efficiency of droplets with various inlet condition of relative humidities (RH, 40%, 90%, and 100%) were compared. As RH increased, the effect of evaporation decreased and inertial separation efficiencies of droplets obtained increased especially for droplets of diameter below 10 micrometers.