• Title/Summary/Keyword: coupling model

Search Result 1,411, Processing Time 0.041 seconds

The Study of Antiferromagnetic Spin-lattice Coupling of FeCr2Se4 (FeCr2Se4의 반강자성 스핀-격자 상호작용 연구)

  • Kang, Ju-Hong;Son, Bae-Soon;Kim, Sam-Jin;Kim, Chul-Sung;Lee, H.G.;Park, Min-Seok;Lee, Sung-Ik
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.86-89
    • /
    • 2007
  • [ $FeCr_2Se_4$ ] prepared under the high pressure (3 GPa) has been studied with x-ray, neutron diffraction techniques, superconducting quantum interference device (SQUID) magnetometer, resistance, and Mossbauer spectroscopy. The temperature dependence of resistance is explained by Mott-VRH and small polaron model for the regions I (T<20 K) and II (T>42 K), respectively. Neutron diffraction results show an antiferromagnetic spin-lattice coupling near the Neel temperature. So finally the distance of atom is enlarged in region (110$FeCr_2Se_4$ shows convex type of temperature dependence.

Hydroelastic Responses of Floating Structure by Modeling Dimensions (부유구조물의 모델링 차원에 따른 유탄성 응답)

  • Hong, Sanghyun;Hwang, Woongik;Lee, Jong Seh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.285-292
    • /
    • 2016
  • In this study, FE-BE direct coupling methods of 1D and 2D problems are considered for the pontoon-type floating structure and the difference of the modeling dimensions is investigated for the hydroelastic response. The modeling dimensions are defined as the 1D problem consisting 1D beam-2D fluid coupling and the 2D problem consisting 2D plate-3D fluid coupling with zero-draft assumption. For case studies, hydroelastic responses of the 1D Problem are compared to those of the 2D Problem for a wide range of aspect ratio and regular waves. It is shown that the effects of the elastic behavior are increased by decreasing the incident wavelength, whereas the effects of the rigid behavior are increased by increasing the incident wavelength. In 2D problem, the incident wave angle can be considered, and slightly more accurate results can be obtained, but the computational efficiency is lower. On the other hand, in 1D problem with plate-strip condition, the incident wave angle cannot be considered, but when the aspect ratio is large, the overall responses can be analyzed through a simplified model, and the computational efficiency can be improved.

A Study on the Characteristics of Monolithic Laser-Waveguide Coupler by BPM (BPM에 의한 Monolithic Laser-Waveguide Coupler의 특성 연구)

  • 장지호;최태일;최병하
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.100-110
    • /
    • 1994
  • In this paper, we present a new analysis of monolithic laser-waveguide coupling structure employing the beam propagation method. Monolithic laser-waveguide coupler has both passive and active components It has too many parameters to consider for an analysis. So we present proper model of coupler by use of directional coupler. We employ the beam propagation method th analyze the proposed structure, we could employ the coupled mode theory but we thought in the case of this paper the beam propagation method is more appropriate than coupler mode theorybecause a number of variables which to consider is too many for the coupled mode theory. Also we use finite difference method to calcurate trial field which is a starting point of beam propagation analysis. Through this approach, we can consider more parameters. And we propose a new structure of monolothic laser-waveguide coupler which has taper structure between the distance in which coupling is taking place and passive waveguide. We can obtain 79% high coupling efficiency from our structure.

  • PDF

Low Frequency Squeal Noise Reduction using Mode Participation Factor in Complex Eigenvalue Analysis (복소고유치해석에서 모드기여도 인자를 이용한 저주파 스퀼소음 저감)

  • Park, Jeong Min;Kim, Hyun Soo;Yoon, Moon Young;Boo, Kwang Seok;Kim, Heung Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.325-331
    • /
    • 2013
  • In this study, a complex eigenvalue analysis is implemented to verify the unstable mode of a brake system using ABAQUS software. The component participation factors and component modal participation factors are used to analyze the total contributions from each component and each component mode to a particular unstable system mode. This study shows that the 1.4-kHz unstable system mode comes from mode coupling between the 2nd nodal diametric mode and 3rd lateral axial mode (LAM) in the baseline model. A sensitivity analysis with a linking index is performed to prevent the mode coupling of the component modes. This linking index analysis shows the optimum mass loading position to move away the natural frequency of the 3rd LAM, which contributes to the unstable mode. Finally, a complex eigenvalue analysis is implemented with mass loading in the tie bar position, and no unstable system mode is generated in the low-frequency range (below 2 kHz).

Proposal and Analysis of Distributed Reflector-Laser Diode Integrated with an Electroabsorption Modulator

  • Kwon, Oh Kee;Beak, Yong Soon;Chung, Yun C.;Park, Hyung-Moo
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.459-468
    • /
    • 2013
  • A novel integrated laser, that is, a distributed reflector laser diode integrated with an electroabsorption modulator, is proposed to improve the output efficiency, single-mode stability, and chirp. The proposed laser can be realized using the selective metalorganic vapor phase epitaxy technique (that is, control of the width of the insulating mask), and its fabrication process is almost the same as the conventional electroabsorption modulated laser (EML) process except for the asymmetric coupling coefficient structure along the cavity. For our analysis, an accurate time-domain transfer-matrix-based laser model is developed. Based on this model, we perform steady-state and large-signal analyses. The performances of the proposed laser, such as the output power, extinction ratio, and chirp, are compared with those of the EML. Under 10-Gbps NRZ modulation, we can obtain a 30% higher output power and about 50% lower chirp than the conventional EML. In particular, the simulation results show that the chirp provided by the proposed laser can appear to have a longer wavelength side at the leading edge of the pulse and a shorter wavelength side at the falling edge.

Integrated Guidance and Control Design for the Near Space Interceptor

  • WANG, Fei;LIU, Gang;LIANG, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.278-294
    • /
    • 2015
  • Considering the guidance and control problem of the near space interceptor (NSI) during the terminal course, this paper proposes a three-channel independent integrated guidance and control (IGC) scheme based on the backstepping sliding mode and finite time disturbance observer (FTDO). Initially, the three-channel independent IGC model is constructed based on the interceptor-target relative motion and nonlinear dynamic model of the interceptor, in which the channel coupling term and external disturbance are regarded as the total disturbances of the corresponding channel. Then, the FTDO is introduced to estimate the target acceleration and control system loop disturbances, and the feed-forward compensation term based on the estimated values is employed to effectively remove the effect of disturbances in finite time. Subsequently, the IGC algorithm based on the backstepping sliding mode is also given to obtain the virtual control moment. Furthermore, a robust least-squares weighted control allocation (RLSWCA) algorithm is employed to distribute the previous virtual control moment among the corresponding aerodynamic fins and reaction jets, which also takes into account the uncertainty in the control effectiveness matrix. Finally, simulation results show that the proposed IGC method can obtain the small miss distance and smooth interceptor trajectories.

Analysis of Fluid-Structure Interaction for Development of Korean Inflatable Rubber Dams for Small Hydropower (소수력 발전용 한국형 공기주입식 고무댐 개발을 위한 유체-구조 연성 해석)

  • Hwang, Tae-Gyu;Kim, Jin-Gu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1221-1230
    • /
    • 2008
  • Inflatable rubber dams are used for controlling flood, impounding water for recreations, preventing beach erosions, diverting water for irrigations, and generating hydropower. They are long, flexible, inflated with air, cylindrical structures on a rigid horizontal foundation such as concrete. The dam is modeled as an elastic shell inflated with air. The mechanical behaviors of the inflated dam model were investigated by using the finite element method. The analysis process such as One Way Coupling Fluid-Structure Interaction consists of two steps. First, the influences of the fluid side were investigated, viz, the shape changes of the inflated rubber dam due to the fluid motions was captured when the height of the dam was 30cm with air pressure 0.01MPa, at which the pressure distributions over the surface of the dam were calculated. And next, the structural deformations were calculated using the pressure distributions. The initial inlet velocity for flow field was set to 0.1m/s. The structural deformation behaviors were investigated. The final research goal is to develop a Korean Inflatable Rubber Dam to be used for generating small hydropower.

Thermo-viscoplastic finite element analysis of orthogonal metal cutting considered tool edge radius (공구끝단반경이 고려된 2차원 금속절삭에 대한 열-점소성 유한요소해석)

  • Kim, Kug-Weon;Lee, Woo-Young;Sin, Hyo-Chol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 1998
  • In this paper, thermo-viscoplastic finite element analysis of the effect of tool edge radius on cutting process are performed. The thermo-viscoplastic cutting model is capable of dealing with free chip geometry and chip-tool contact length. The coupling with thermal effects is also considered. Orthogonal cutting experiments are performed for 0.2% carbon steel with tools having 3 different edge radii and the tool forces are measured. The experimental results are discussed in comparison with the results of the FEM analysis. From the study, we confirm that this cutting model can well be applied to the cutting process considered the tool edge radius and that a major causes of the "size effect" is the tool edge radius. With numerical analysis, the effects of the tool edge radius on the stress distributions in workpiece, the temperature distributions in workpiece and tool, and the chip shape are investigated.estigated.

Studies on Coupled Vibrations of Diesel Engine Propulsion Shafting(2nd Report: Analyzing of Forced Vibration with Damping) (디젤기관 추진축계의 연성진공에 관한 연구(제2보 : 강제 감쇠 연성진동해석))

  • 전효중;이돈출;김의간;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.563-572
    • /
    • 2001
  • With the results of calculation for natural frequencies the reponses of forced coupled vibration of propulsion shafting system were investigated by the modal analysis method. For the forced vibration response analysis, the axial exciting forces, the axial damper/detuner, propeller exciting forces and damping coefficients were extensively considered. As the conclusion of this study, some items are cleared as follows.-The torsional vibration amplitudes are not influenced by the radial excitation forces of the crank shaft. -The axial vibration amplitudes are influenced by the tangential exciting forces as well as the radial exciting forces of the crank shaft. The increase of the amplitudes is observed in the speed range at the neighbourhood of any torsional critical speed. 1The closer the torsional and axial critical speed. the larger coupling effect becomes. -The axial exciting force of propeller is relatively strong comparing with axial exciting forces of cylinder gas pressure and oscillating inertia of reciprocating mechanism. Therefore, the following conclusions are obtained. -Torsional vibration calculation with the classical one dimensional model is still valid. -The influence of torsional excitation at each crank upon the axial vibration is improtant. especially in the neighbourhood of a torsional critical speed. That means that the calculation of axial vibration with the classical one dimensional model is inaccurate in most of cases.

  • PDF

SPACE WEATHER RESEARCH BASED ON GROUND GEOMAGNETIC DISTURBANCE DATA (지상지자기변화기록을 이용한 우주천기연구)

  • AHN BYUNG-HO
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.1-13
    • /
    • 2000
  • Through the coupling between the near-earth space environment and the polar ionosphere via geomagnetic field lines, the variations occurred in the magnetosphere are transferred to the polar region. According to recent studies, however, the polar ionosphere reacts not only passively to such variations, but also plays active roles in modifying the near-earth space environment. So the study of the polar ionosphere in terms of geomagnetic disturbance becomes one of the major elements in space weather research. Although it is an indirect method, ground magnetic disturbance data can be used in estimating the ionospheric current distribution. By employing a realistic ionospheric conductivity model, it is further possible to obtain the distributions of electric potential, field-aligned current, Joule heating rate and energy injection rate associated with precipitating auroral particles and their energy spectra in a global scale with a high time resolution. Considering that the ground magnetic disturbances are recorded simultaneously over the entire polar region wherever magnetic station is located, we are able to separate temporal disturbances from spatial ones. On the other hand, satellite measurements are indispensible in the space weather research, since they provide us with in situ measurements. Unfortunately it is not easy to separate temporal variations from spatial ones specifically measured by a single satellite. To demonstrate the usefulness of ground magnetic disturbance data in space weather research, various ionospheric quantities are calculated through the KRM method, one of the magneto gram inversion methods. In particular, we attempt to show how these quantities depend on the ionospheric conductivity model employed.

  • PDF