• Title/Summary/Keyword: coupling model

Search Result 1,411, Processing Time 0.021 seconds

Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdalla, Waleed S.;Kabeel, Abdallah M.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.141-151
    • /
    • 2020
  • This manuscript tends to investigate influences of nanoscale and surface energy on a static bending and free vibration of piezoelectric perforated nanobeam structural element, for the first time. Nonlocal differential elasticity theory of Eringen is manipulated to depict the long-range atoms interactions, by imposing length scale parameter. Surface energy dominated in nanoscale structure, is included in the proposed model by using Gurtin-Murdoch model. The coupling effect between nonlocal elasticity and surface energy is included in the proposed model. Constitutive and governing equations of nonlocal-surface perforated Euler-Bernoulli nanobeam are derived by Hamilton's principle. The distribution of electric potential for the piezoelectric nanobeam model is assumed to vary as a combination of a cosine and linear variation, which satisfies the Maxwell's equation. The proposed model is solved numerically by using the finite-element method (FEM). The present model is validated by comparing the obtained results with previously published works. The detailed parametric study is presented to examine effects of the number of holes, perforation size, nonlocal parameter, surface energy, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric perforated nanobeams. It is found that the effect of surface stresses becomes more significant as the thickness decreases in the range of nanometers. The effect of number of holes becomes significant in the region 0.2 ≤ α ≤ 0.8. The current model can be used in design of perforated nano-electro-mechanical systems (PNEMS).

Physics-based modelling and validation of inter-granular helium behaviour in SCIANTIX

  • Giorgi, R.;Cechet, A.;Cognini, L.;Magni, A.;Pizzocri, D.;Zullo, G.;Schubert, A.;Van Uffelen, P.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2367-2375
    • /
    • 2022
  • In this work, we propose a new mechanistic model for the treatment of helium behaviour at the grain boundaries in oxide nuclear fuel. The model provides a rate-theory description of helium inter-granular behaviour, considering diffusion towards grain edges, trapping in lenticular bubbles, and thermal resolution. It is paired with a rate-theory description of helium intra-granular behaviour that includes diffusion towards grain boundaries, trapping in spherical bubbles, and thermal re-solution. The proposed model has been implemented in the meso-scale software designed for coupling with fuel performance codes SCIANTIX. It is validated against thermal desorption experiments performed on doped UO2 samples annealed at different temperatures. The overall agreement of the new model with the experimental data is improved, both in terms of integral helium release and of the helium release rate. By considering the contribution of helium at the grain boundaries in the new model, it is possible to represent the kinetics of helium release rate at high temperature. Given the uncertainties involved in the initial conditions for the inter-granular part of the model and the uncertainties associated to some model parameters for which limited lower-length scale information is available, such as the helium diffusivity at the grain boundaries, the results are complemented by a dedicated uncertainty analysis. This assessment demonstrates that the initial conditions, chosen in a reasonable range, have limited impact on the results, and confirms that it is possible to achieve satisfying results using sound values for the uncertain physical parameters.

On the nonlinear structural analysis of wind turbine blades using reduced degree-of-freedom models

  • Holm-Jorgensen, K.;Staerdahl, J.W.;Nielsen, S.R.K.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.107-127
    • /
    • 2008
  • Wind turbine blades are increasing in magnitude without a proportional increase of stiffness for which reason geometrical and inertial nonlinearities become increasingly important. Often these effects are analysed using a nonlinear truncated expansion in undamped fixed base mode shapes of a blade, modelling geometrical and inertial nonlinear couplings in the fundamental flap and edge direction. The purpose of this article is to examine the applicability of such a reduced-degree-of-freedom model in predicting the nonlinear response and stability of a blade by comparison to a full model based on a nonlinear co-rotating FE formulation. By use of the reduced-degree-of-freedom model it is shown that under strong resonance excitation of the fundamental flap or edge modes, significant energy is transferred to higher modes due to parametric or nonlinear coupling terms, which influence the response and stability conditions. It is demonstrated that the response predicted by such models in some cases becomes instable or chaotic. However, as a consequence of the energy flow the stability is increased and the tendency of chaotic vibrations is reduced as the number of modes are increased. The FE model representing the case of infinitely many included modes, is shown to predict stable and ordered response for all considered parameters. Further, the analysis shows that the reduced-degree-of-freedom model of relatively low order overestimates the response near resonance peaks, which is a consequence of the small number of included modes. The qualitative erratic response and stability prediction of the reduced order models take place at frequencies slightly above normal operation. However, for normal operation of the wind turbine without resonance excitation 4 modes in the reduced-degree-of-freedom model perform acceptable.

Implementation and Verification of Distance Relay Models for Real Time Digital Simulator (실시간 전력계통 시뮬레이터를 이용한 보호계전모델 개발)

  • Lee, Joo-Hun;Yoon, Yong-Beum;Cha, Seung-Tae;Lee, Jin;Choe, Jong-Woon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.393-400
    • /
    • 2003
  • This paper discusses how to implement and verify a software model of the digital relay that can be added to real time digital simulator(RTDS) model library and is then subjected to the same outputs as the actual relay. The software model is stand-alone and can be used with real relays. It is also possible to conduct interactive real-time tests when the system effects of the relay action need to be investigated. The characteristics of mho type and the quadrilateral type, which is commonly used in recently developed relays, are modeled in this paper. Single circuit line and double circuit line system are used for model verification. The transmission lines are each 100 km in length and are modeled as distributed parameter lines but not frequency dependent. The transmission lines in the single circuit system are modeled as ideally transposed line. The mutual coupling data with the parallel line was taken account in the transmission lines for the double circuit system. The main CTs and PTs are included and operated in their linear region during the tests. For the purpose of testing the relay model accuracy the faults have been applied at various points on the protected line. Its accuracy is assessed against theoretical values.

Development and Performance Validation of Thermal Control Subsystem for Earth Observation Small Satellite Flight Model (지구관측 소형위성 비행모델의 열제어계 개발 및 성능 검증)

  • Chang, Jin-Soo;Jeong, Yun-Hwang;Kim, Byung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1222-1228
    • /
    • 2008
  • A small satellite, DubaiSat-1 FM(Flight Model), which is based on SI-200 standard bus platform and scheduled to be launched in 2008, is being developed by Satrec Initiative and EIAST(Emirates Institution for Advanced Science and Technology). The TCS(Thermal Control Subsystem) of DubaiSat-1 FM has been designed to mainly utilize passive thermal control in order to minimize power consumption, but the active control method using heaters has been applied to some critical parts. Also, thermal analysis has been performed for DubaiSat-1's mission orbit using a thermal analysis model. The thermal design is modified and optimized to satisfy the design temperature requirements for all parts according to the analysis result. The thermal control performance of DubaiSat-1 FM is verified by thermal vacuum space simulation, consisting of thermal cycling and thermal balance test. Also, to validate the thermal modeling of DubaiSat-1 FM, comparison of test results with analysis has been performed and model calibration has been completed.

Analytical Solution of Magnetic Field in Permanent-Magnet Eddy-Current Couplings by Considering the Effects of Slots and Iron-Core Protrusions

  • Dai, Xin;Liang, Qinghua;Ren, Chao;Cao, Jiayong;Mo, Jinqiu;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.273-283
    • /
    • 2015
  • In this study, we propose an analytical model for studying magnetic fields in radial-flux permanent-magnet eddy-current couplings by considering the effects of slots and iron-core protrusions on the eddy currents. We focus on the analytical prediction of the air-gap field by considering the influence of eddy currents induced in conducting bars. In the proposed model, the permanent magnet region is treated as the source of a time-varying magnetic field and the moving-conductor eddy current problem is solved based on the resolution of time-harmonic Helmholtz equations. The spatial harmonics in the air gap and in slots, as well as the time harmonics are all considered in the analytical calculation. Based on the proposed field model, the electromagnetic torque is computed by using the Maxwell stress tensor method. Nonlinear finite element analysis is performed to validate the analytical model. The proposed model can be used for permanent-magnet eddy-current couplings with any slot-pole combination.

Constitutive Model for Unsaturated Soils Based on the Effective Stress (유효응력에 근거한 불포화토의 역학적 구성모델)

  • Shin, Ho-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.55-69
    • /
    • 2011
  • The importance of unsaturated state in various geo-engineering problems has led to the advance of mechanical constitutive model emulating behavior of unsaturated soils in response to thermo-hydro-mechanical loading. Elasto-plastic mechanical constitutive model for unsaturated soil is formulated based on Bishop's effective stress. Effective stress and temperature are main variables in constitutive equation, and incremental formulation of constitutive relationship is derived to compute stress update and stiffness tensor. Numerical simulations involving coupled THM processes are conducted to discuss numerical stability and applicability of developed constitutive model: one-dimensional test, tri-axial compression test, and clay-buffering at high level radioactive waste disposal. Numerical results demonstrated that developed model can predict very complex behavior of coupled THM phenomena and is applicable to geo-engineering problems under various environmental conditions, as well as interpret typical behavior of unsaturated soils.

Analysis of LBLOCA of APR1400 with 3D RPV model using TRACE

  • Yunseok Lee;Youngjae Lee;Ae Ju Chung;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1651-1664
    • /
    • 2023
  • It is very difficult to capture the multi-dimensional phenomena such as asymmetric flow and temperature distributions with the one-dimensional (1D) model, obviously, due to its inherent limitation. In order to overcome such a limitation of the 1D representation, many state-of-the-art system codes have equipped a three-dimensional (3D) component for multi-dimensional analysis capability. In this study, a standard multi-dimensional analysis model of APR1400 (Advanced Power Reactor 1400) has been developed using TRACE (TRAC/RELAP Advanced Computational Engine). The entire reactor pressure vessel (RPV) of APR1400 has been modeled using a single 3D component. The fuels in the reactor core have been described with detailed and coarse representations, respectively, to figure out the impact of the fuel description. Using both 3D RPV models, a comparative analysis has been performed postulating a double-ended guillotine break at a cold leg. Based on the results of comparative analysis, it is revealed that both models show no significant difference in general plant behavior and the model with coarse fuel model could be used for faster transient analysis without reactor kinetics coupling. The analysis indicates that the asymmetric temperature and flow distributions are captured during the transient, and such nonuniform distributions contribute to asymmetric quenching behaviors during blowdown and reflood phases. Such asymmetries are directly connected to the figure of merits in the LBLOCA analysis. Therefore, it is recommended to employ a multi-dimensional RPV model with a detailed fuel description for a realistic safety analysis with the consideration of the spatial configuration of the reactor core.

Equivalent Circuit Modeling of Aperture-Coupled Microstrip-to-Vertically Mounted Slotline Coupler (개구면을 통한 마이크로스트립-수직 슬롯 라인 결합 구조의 회로망 해석과 모델링)

  • Nam, Sang-Ho;Kim, Jeoung-Phill
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.357-365
    • /
    • 2009
  • A general analysis of a microstrip-to-vertically mounted slotline(VMS) coupler is presented with a view to developing an equivalent circuit, and the efficient evaluation of the related circuit element values. Based on this theory, the effects of frequency and structure parameters such as aperture length and VMS width on the characteristics of the coupler are studied. In order to check the validity of the proposed analysis and design theory, a C-band linearly tapered slot antenna fed by an aperture-coupled back-to-back microstripline-to- VMS coupling structure is optimally designed using a hybrid genetic algorithm. Moreover, the computed characteristics from the network analysis is compared to the measurement and simulation results. The obtained results fully validate the efficiency and accuracy of the proposed network model.

Light Propagation in Multimode GRIN(graded-index) Fibers with Intrusion Sensing Capability (침입 감지기능을 가진 다중모드 GRIN(graded-index) 광섬유 내에서의 광파의 전파)

  • Sohn, Young-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.273-278
    • /
    • 2002
  • An intrusion-sensitive capability of multimode graded-index (GRIN) optical fibers under bending has been investigated. In this system, the data light is transmitted in the fundamental mode while alarm monitor light is launched in a high-order mode at the same time. An attempted intrusion to drain data by bending the fiber results in greater attenuation of a monitor signal in higher order modes, thereby setting off an alarm at the receiver. Light propagation in a multimode graded-index fiber is also analyzed theoretically when the fundamental mode is selectively excited and the fiber is bent around a constant radius mandrel. The bending generates coupling between the various modes of the fiber. Power transitions of the fundamental mode by changing the bending radius were also analyzed numerically using program simulation. It is shown that Asawa-Taylor model[4] is valid up to 1cm of the radius of curvature of the fiber bend.