Acknowledgement
This work has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945077 (PATRICIA Project).
References
- T. Wiss, et al., Evolution of spent nuclear fuel in dry storage conditions for millennia and beyond, J. Nucl. Mater. 451 (1-3) (2014) 198-206. https://doi.org/10.1016/j.jnucmat.2014.03.055
- P. Konarski, C. Cozzo, G. Khvostov, H. Ferroukhi, Spent nuclear fuel in dry storage conditions e current trends in fuel performance modeling, J. Nucl. Mater. 555 (2021) 153138. https://doi.org/10.1016/j.jnucmat.2021.153138
- M.G. El-Samrah, A.F. Tawfic, S.E. Chidiac, Spent nuclear fuel interim dry storage; Design requirements, most common methods, and evolution: a review, Ann. Nucl. Energy 160 (2021) 108408. https://doi.org/10.1016/j.anucene.2021.108408
- J.S. Kim, J.D. Hong, Y.S. Yang, D.H. Kook, Rod internal pressure of spent nuclear fuel and its effects on cladding degradation during dry storage, J. Nucl. Mater. 492 (2017) 253-259. https://doi.org/10.1016/j.jnucmat.2017.05.047
- G. Spykman, Dry storage of spent nuclear fuel and high active waste in Germany - current situation and technical aspects on inventories integrity for a prolonged storage time, Nucl. Eng. Technol. 50 (2) (2018) 313-317. https://doi.org/10.1016/j.net.2018.01.009
- H.J. Cha, K.N. Jang, K.T. Kim, An allowable cladding peak temperature for spent nuclear fuels in interim dry storage, J. Nucl. Mater. 498 (2018) 409-420. https://doi.org/10.1016/j.jnucmat.2017.11.018
- S. Alyokhina, Thermal analysis of certain accident conditions of dry spent nuclear fuel storage, Nucl. Eng. Technol. 50 (5) (2018) 717-723. https://doi.org/10.1016/j.net.2018.03.002
- P.A.C. Raynaud, R.E. Einziger, Cladding stress during extended storage of high burnup spent nuclear fuel, J. Nucl. Mater. 464 (2015) 304-312. https://doi.org/10.1016/j.jnucmat.2015.05.008
- A. Arkoma, R. Huhtanen, J. Lepp anen, J. Peltola, T. Pattikangas, Calculation chain for the analysis of spent nuclear fuel in long-term interim dry storage, Ann. Nucl. Energy 119 (2018) 129-138. https://doi.org/10.1016/j.anucene.2018.04.037
- P. Van Uffelen, C. Gyori, A. Schubert, J. van de Laar, Z. Hozer, G. Spykman, Extending the application range of a fuel performance code from normal operating to design basis accident conditions, J. Nucl. Mater. 383 (1-2) (2008) 137-143. https://doi.org/10.1016/j.jnucmat.2008.08.043
- F. Feria, L.E. Herranz, J. Penalva, On the way to enabling FRAPCON-3 to model spent fuel under dry storage conditions: the thermal evolution, Ann. Nucl. Energy 85 (2015) 995-1002. https://doi.org/10.1016/j.anucene.2015.07.017
- L.E. Herranz, J. Penalva, F. Feria, CFD analysis of a cask for spent fuel dry storage: the thermal evolution, Ann. Nucl. Energy 76 (2015) 54-62. https://doi.org/10.1016/j.anucene.2014.09.032
- D. Pizzocri, et al., A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools, J. Nucl. Mater. 502 (2018) 323-330. https://doi.org/10.1016/j.jnucmat.2018.02.024
- G. Pastore, L. Luzzi, V. Di Marcello, P. Van Uffelen, Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis, Nucl. Eng. Des. 256 (2013) 75-86. https://doi.org/10.1016/j.nucengdes.2012.12.002
- T. Barani, et al., Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS, J. Nucl. Mater. 486 (2017) 96-110. https://doi.org/10.1016/j.jnucmat.2016.10.051
- G. Pastore, et al., Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling, J. Nucl. Mater. 456 (2015) 398-408. https://doi.org/10.1016/j.jnucmat.2014.09.077
- T. Wiss, et al., Properties of the high burnup structure in nuclear light water reactor fuel, Radiochim. Acta 105 (11) (2017) 893-906. https://doi.org/10.1515/ract-2017-2831
- D. Pizzocri, F. Cappia, L. Luzzi, G. Pastore, V.V. Rondinella, P. Van Uffelen, A semi-empirical model for the formation and depletion of the high burnup structure in UO2, J. Nucl. Mater. 487 (2017) 23-29. https://doi.org/10.1016/j.jnucmat.2017.01.053
- K. Lassmann, TRANSURANUS: a fuel rod analysis code ready for use, J. Nucl. Mater. 188 (C) (1992) 295-302. https://doi.org/10.1016/0022-3115(92)90487-6
- B. Baurens, J. Sercombe, C. Riglet-Martial, L. Desgranges, L. Trotignon, P. Maugis, 3D thermo-chemical-mechanical simulation of power ramps with ALCYONE fuel code, J. Nucl. Mater. 452 (1-3) (2014) 578-594. https://doi.org/10.1016/j.jnucmat.2014.06.021
- J.D. Hales, R.L. Williamson, S.R. Novascone, G. Pastore, B.W. Spencer, D.S. Stafford, K.A. Gamble, D.M. Perez, W. Liu, BISON Theory Manual - the Equations behind Nuclear Fuel Analysis, Idaho Falls, 2016.
- L. Cognini, A. Cechet, T. Barani, D. Pizzocri, P. Van Uffelen, L. Luzzi, Towards a physics-based description of intra-granular helium behaviour in oxide fuel for application in fuel performance codes, Nucl. Eng. Technol. 53 (2021) 562-571. https://doi.org/10.1016/j.net.2020.07.009
- H.J. Matzke, Gas release mechanisms in UO2 - a critical review, Radiat. Eff. 53 (3-4) (1980) 219-242. https://doi.org/10.1080/00337578008207118
- M.S. Veshchunov, On the theory of fission gas bubble evolution in irradiated UO2 fuel, J. Nucl. Mater. 277 (2000) 67-81. https://doi.org/10.1016/S0022-3115(99)00136-1
- D.R. Olander, D. Wongsawaeng, Re-solution of fission gas e a review: Part I. Intragranular bubbles, J. Nucl. Mater. 354 (1-3) (2006) 94-109. https://doi.org/10.1016/j.jnucmat.2006.03.010
- M. Tonks, et al., Unit mechanisms of fission gas release: current understanding and future needs, J. Nucl. Mater. 504 (2018) 300-317. https://doi.org/10.1016/j.jnucmat.2018.03.016
- J. Rest, M.W.D. Cooper, J. Spino, J.A. Turnbull, P. Van Uffelen, C.T. Walker, Fission gas release from UO2 nuclear fuel: a review, J. Nucl. Mater. 513 (2019) 310-345. https://doi.org/10.1016/j.jnucmat.2018.08.019
- R.J. White, The development of grain-face porosity in irradiated oxide fuel, J. Nucl. Mater. 325 (1) (2004) 61-77. https://doi.org/10.1016/j.jnucmat.2003.10.008
- D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. 532 (2020) 152042. https://doi.org/10.1016/j.jnucmat.2020.152042
- P. Garcia, et al., A study of helium mobility in polycrystalline uranium dioxide, J. Nucl. Mater. 430 (1-3) (2012) 156-165. https://doi.org/10.1016/j.jnucmat.2012.06.001
- P. Van Uffelen, Contribution to the Modelling of Fission Gas Release in Light Water Reactor Fuel, 2002. PhD Thesis.
- D.R. Olander, P. Van Uffelen, On the role of grain boundary diffusion in fission gas release, J. Nucl. Mater. 288 (2-3) (2001) 137-147. https://doi.org/10.1016/S0022-3115(00)00725-X
- P. Van Uffelen, Modelling the variable precipitation of fission products at grain boundaries, J. Nucl. Mater. 280 (3) (2000) 275-284. https://doi.org/10.1016/S0022-3115(00)00061-1
- A.M. Booth, A Method of Calculating Fission Gas Diffusion from UO2 Fuel and its Application to the X-2-F Loop Test, 1957.
- L. Cognini, et al., Helium solubility in oxide nuclear fuel: derivation of new correlations for Henry's constant, Nucl. Eng. Des. 340 (2018) 240-244. https://doi.org/10.1016/j.nucengdes.2018.09.024
- Z. Talip, et al., Thermal diffusion of helium in 238Pu-doped UO2, J. Nucl. Mater. 445 (1-3) (2014) 117-127. https://doi.org/10.1016/j.jnucmat.2013.10.066
- L. Luzzi, et al., Helium diffusivity in oxide nuclear fuel: critical data analysis and new correlations, Nucl. Eng. Des. 330 (2018).
- D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, 1976.
- K. Nakajima, H. Serizawa, N. Shirasu, Y. Haga, Y. Arai, The solubility and diffusion coefficient of helium in uranium dioxide, J. Nucl. Mater. 419 (1-3) (2011) 272-280. https://doi.org/10.1016/j.jnucmat.2011.08.045
- F. Rufeh, D.R. Olander, T.H. Pigford, The solubility of helium in uranium dioxide, Nucl. Sci. Eng. 23 (4) (1965) 335-338. https://doi.org/10.13182/NSE65-A21069
- E. Maugeri, et al., Helium solubility and behaviour in uranium dioxide, J. Nucl. Mater. 385 (2) (2009) 461-466. https://doi.org/10.1016/j.jnucmat.2008.12.033
- L. Van Brutzel, A. Chartier, A new equation of state for helium nanobubbles embedded in UO2 matrix calculated via molecular dynamics simulations, J. Nucl. Mater. 518 (2019) 431-439. https://doi.org/10.1016/j.jnucmat.2019.02.015
- R.M. Davies, S.G. Taylor, The mechanics of large bubbles rising through extended liquids and through liquids in tubes, Dyn. Curved Front. 200 (1062) (1988) 377-392.
- J.Y. Colle, et al., A mass spectrometry method for quantitative and kinetic analysis of gas release from nuclear materials and its application to helium desorption from UO2 and fission gas release from irradiated fuel, J. Nucl. Sci. Technol. 51 (5) (2014) 700-711. https://doi.org/10.1080/00223131.2014.889583
- G. Martin, et al., Helium release in uranium dioxide in relation to grain boundaries and free surfaces, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (11-12) (2010) 2133-2137. https://doi.org/10.1016/j.nimb.2010.02.064
- G. Martin, et al., A quantitative mNRA study of helium intergranular and volume diffusion in sintered UO2, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 249 (1-2 SPEC. ISS.) (2006) 509-512. https://doi.org/10.1016/j.nimb.2006.03.042