• Title/Summary/Keyword: coupling model

Search Result 1,411, Processing Time 0.029 seconds

Innovative Converged Service and It's Adoption, Use and Diffusion: A Holistic Approach to Diffusion of Innovations, Combining Adoption-Diffusion and Use Diffusion Paradigms (디지털융합서비스의 수용, 사용, 확산에 관한 연구: 혁신확산에 관한 수용-확산 및 사용-확산의 통합적 접근)

  • Song, Yeong-Hwa;Im, Myeong-Hwan;Motohashi, Kazuyuki;Kim, Seung-Ho
    • Proceedings of the Korea Database Society Conference
    • /
    • 2010.06a
    • /
    • pp.165-180
    • /
    • 2010
  • This study takes a holistic approach to understanding the diffusion of IPTV services by combining the adoption-diffusion model and the use-diffusion model of innovation. IPTV service, a leading Digital converged application coupling media content with telecom, has been recently launched commercially in Korea. We created a structural model of adoption-diffusion, using the perceived ease-of-use and usefulness of TAM(Technology Acceptance Model) as mediating variables, and a structural model of use-diffusion, with the rate of use and the variety of use as mediating variables. To empirically analyze these models, non-users of IPTV were surveyed using the adoption-diffusion model to identity factors influencing their intention to subscribe to the service. Meanwhile, users of IPTV were surveyed using the use-diffusion model to determine the factors that influence their satisfaction with the service and their intention to fe-use it. Under the adoption-diffusion model, we found that trialability, household innovativeness and perceived risk were the determinants of user satisfaction with IPTV, and perceived ease-of-use, the mediating factors. Under the use-diffusion model, complementarity and communication were shown to be the determinants of users' satisfaction with IPTV, and variety of use, the mediating factor. We also found that consumers' intention to re-use IPTV was strongly influenced by its relative advantage and perceived risk.

  • PDF

The Design and Implementation of User Interface Builder to support Software Reuse System (소프트웨어 재사용 시스템을 지원하는 사용자 인터페이스 구축기의 설계 및 구현)

  • Kim, Sang-Geun;Hong, Chan-Gi;Lee, Gyeong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.3
    • /
    • pp.324-334
    • /
    • 1995
  • Most UIMS(User Interface Management System) adopt dialogue model of user interface Implementation of UIMS influenced by adopted dialogue model of user interface strongly. While the Model-View-Controller framework has contributed to many aspects of user interface development in Smalltalk environment- user interfaces generated with MVC have highly coupled model, view, and controller classes. Such coupling impedes the reuse of software component. So In this paper, we suggest MVCD model to resolve a decline of reuse with MVC have highly coupled. User messages are not changed by Controller immediately, but sent to Dialogue object which maintains the syntatic structure of the interaction. Dialogue object invokes Model object to updates is value. Since Model objects have active values, the value change propagates to the linked Controllers. Finally, Controller object convert the new value and update the View object. User interface builder is implemented on X-window with OSF/Motif that is base on this user dialogue model.

  • PDF

Numerical analysis and fluid-solid coupling model test of filling-type fracture water inrush and mud gush

  • Li, Li-Ping;Chen, Di-Yang;Li, Shu-Cai;Shi, Shao-Shuai;Zhang, Ming-Guang;Liu, Hong-Liang
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.1011-1025
    • /
    • 2017
  • The geological conditions surrounding the Jijiapo Tunnel of the Three Gorges Fanba Highway project in Hubei Province are very complex. In this paper, a 3-D physical model was carried out to study the evolution process of filling-type fracture water inrush and mud gush based on the conditions of the section located between 16.040 km and 16.042 km of the Jijiapo Tunnel. The 3-D physical model was conducted to clarify the effect of the self-weight of the groundwater level and tunnel excavation during water inrush and mud gush. The results of the displacement, stress and seepage pressure of fracture and surrounding rock in the physical model were analyzed. In the physical model the results of the model test show that the rock displacement suddenly jumped after sustainable growth, rock stress and rock seepage suddenly decreased after continuous growth before water inrushing. Once water inrush occured, internal displacement of filler increased successively from bottom up, stress and seepage pressure of filler droped successively from bottom up, which presented as water inrush and mud gush of filling-type fracture was a evolving process from bottom up. The numerical study was compared with the model test to demonstrate the effectiveness and accuracy of the results of the model test.

Nonlinear numerical modelling for the effects of surface explosions on buried reinforced concrete structures

  • Nagy, N.;Mohamed, M.;Boot, J.C.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-18
    • /
    • 2010
  • The analysis of structure response and design of buried structures subjected to dynamic destructive loads have been receiving increasing interest due to recent severe damage caused by strong earthquakes and terrorist attacks. For a comprehensive design of buried structures subjected to blast loads to be conducted, the whole system behaviour including simulation of the explosion, propagation of shock waves through the soil medium, the interaction of the soil with the buried structure and the structure response needs to be simulated in a single model. Such a model will enable more realistic simulation of the fundamental physical behaviour. This paper presents a complete model simulating the whole system using the finite element package ABAQUS/Explicit. The Arbitrary Lagrange Euler Coupling formulation is used to model the explosive charge and the soil region near the explosion to eliminate the distortion of the mesh under high deformation, while the conventional finite element method is used to model the rest of the system. The elasto-plastic Drucker-Prager Cap model is used to model the soil behaviour. The explosion process is simulated using the Jones-Wilkens-Lee equation of state. The Concrete Damage Plasticity model is used to simulate the behaviour of concrete with the reinforcement considered as an elasto-plastic material. The contact interface between soil and structure is simulated using the general Mohr-Coulomb friction concept, which allows for sliding, separation and rebound between the buried structure surface and the surrounding soil. The behaviour of the whole system is evaluated using a numerical example which shows that the proposed model is capable of producing a realistic simulation of the physical system behaviour in a smooth numerical process.

Analysis of the Effect of Contact Stiffness on the Out-of-plane Motion of a Disc Brake System using 2-DOE Model (2자유도 모텔을 이용한 디스크 브레이크의 면외 운동에 미치는 접촉강성의 영향 분석)

  • 신기홍;조용구;차병규;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.160-167
    • /
    • 2004
  • A two degree-of-freedom mathematical model is presented to investigate the friction mechanism of a disc brake system. A contact parameter is introduced to describe the coupling between the in-plane and the out-of-plane motions. The model with the contact parameter is considered under the assumption that the out-of-plane motion depends on the friction force along the in-plane motion. In order to describe the relationship between the friction force and the out-of plane motion, the dynamic friction coefficient is considered as a function of both relative velocity and normal farce. Using this friction law, a contact stiffness matrix along the normal direction can be obtained. The out-of-plane motion is then investigated by both the stability analysis and the numerical analysis for various parametric conditions. The results show that the stiffness parameters of the pad and the disc must be controlled at the same time. Also, the numerical analysis shows the existence of limit cycle caused by the effect of intermittent contact stiffness.

Numerical Simulation of Unsteady Cavitating Flow Around 2D Hydrofoil (수중익 주위의 2차원 비정상 공동 현상 해석)

  • Lee, Se-Young;Park, Soo-Hyung;Lee, Chang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.653-662
    • /
    • 2007
  • Due to the difficulty raised from the coupling of cavitation modeling with turbulent flow, numerical simulation for two phase flow remains one of the challenging issues in the society. This research focuses on the development of numerical code to deal with incompressible two phase flow around 2D hydrofoil by combing the cavitation model suggested by Kunz et al. with $k-{\varepsilon}$ turbulent model. The simulation results are compared to experimental data to verify the validity of the developed code. Also, the comparison of the calculation results is made with LES results to evaluate the capability of $k-{\varepsilon}$ turbulence model. The calculation results show very good agreement with experimental observations even though this code can not grasp the small scaled bubbles in the calculation wheres LES can hold the real physics. This code will be extended to 3D compressible two phase flow for the study on the fluid dynamics in the inducers and impellers.

Flight Dynamic Identification of a Model Helicopter using CIFER®(II) - Frequency Response Analysis - (CIFER®를 이용한 무인 헬리콥터의 동특성 분석 (II) - 주파수 응답 해석 -)

  • Bae, Yeoung-Hwan;Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.476-483
    • /
    • 2011
  • The aerial application using an unmanned helicopter has been already utilized and an attitude controller would be developed to enhance the operational convenience and safety of the operator. For a preliminary study of designing flight controller, a state space model for an RC helicopter would be identified. Frequency sweep flight tests were performed and time history data were acquired in the previous study. In this study, frequency response of the flight test data of a small unmanned helicopter was analyzed by using the CIFER software. The time history flight data consisted of three replications each for collective pitch, aileron, elevator and rudder sweep inputs. A total of 36 frequency responses were obtained for the four control stick inputs and nine outputs including linear velocities and accelerations and angular velocities in 3-axis. The results showed coherence values higher than 0.6 for every primary control inputs and corresponding on-axis outputs for the frequency range from 0.07 to 4 Hz. Also the analysis of conditioned frequency response showed its effectiveness in evaluating cross coupling effects. Based on the results, the dynamic characteristics of the model helicopter can further be analyzed in terms of transfer functions and the undamped natural frequency and damping ratio of each critical mode.

Squeal Noise Analysis and Reduction of Drum Brake Using Component Mode Synthesis (구분모드합성에 의한 드럼 브레이크 스퀼 소음 해석 및 저감)

  • Kim, Jin-Ho;Bae, Byung-Ju;Lee, Shi-Bok;Kim, Tae-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.72-80
    • /
    • 2005
  • Recent studies have dealt with brake squeal in terms of the coupled vibration of brake component parts. In this paper, we assemble the mode models derived from FE analysis of the individual components of the drum brake system into the system model by considering the friction interaction of the lining and drum at the interface. The validity of the component models are backed up by the experimental confirmation work. By scrutinizing the real parts of the complex eigen-values of the system, the unstable modes, which may be strong candidate sources of squeal noise, are identified. Mode participation factors are calculated to examine the modal coupling mechanism. The model predictions for the unstable frequencies pointed well the actual squeal noise frequencies measured through field test. Sensitivity analysis is also performed to identify parametric dependency trend of the unstable modes, which would indicate the direction for the squeal noise reduction design. Finally, reduction of the squeal noise tendency through shape modification is tried.

A Study on Dynamic Analysis of the Electrostatic Actuator (정전력 구동기의 동특성 해석)

  • Lee S.K.;Kim J.N.;Moon W.K.;Choi J.H.;Park I.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.686-689
    • /
    • 2005
  • A numerical simulation method is developed to analyze the dynamic response of a cantilever switch, which is driven by electrostatic force and a basic component of electro-mechanical coupled system. First, point-charges model on conductor is proposed as a lumped parameter of electrical part. Then, this model is easily incorporated into a multi-body dynamics analysis algorithm, the generalized recursive dynamics formula previously developed by our research group. The resulting motion of a coupled overall system is formulated as a differential algebraic equation form including electrical and mechanical variables together. The equation is simultaneously solved in every time step. To implement this approach into the useful dynamics analysis tool, we used multibody dynamics software (RecurDyn) based on the generalized recursive formula using relative coordinate. The developed numerical simulation tool is evaluated by applying to many different driving condition and switch configuration. The final analysis model will be added to RecurDyn as a basic module for dynamics analysis of electro-mechanical coupled system.

  • PDF

3D numerical simulation of group-pile foundation subjected to horizontal cyclic loading (3차원 수치해석을 이용한 군말뚝기초의 반복수평하중재하실험에 대한 연구)

  • Jin, Youngji-Ji;Kim, Jin-Man;Choi, Bong-Hyuck;Lee, Dea-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.515-518
    • /
    • 2010
  • Horizontal forces may form a major part of the loading system for structures supported on pile groups. It is known that during a strong earthquake, the dynamic behavior of a group-pile foundation is related not only to the inertial force coming from the superstructures but also to the deformation of the surrounding ground. Therefore, it is necessary to understand the behaviors of the group-pile foundations and superstructures during major earthquakes. In this paper, numerical simulation of real-scale group-pile foundation subjected to horizontal cyclic loading is conducted by using a program named as DBLEAVES. In the analysis, nonlinear behaviors of ground and piles are described by cyclic mobility model and axial force dependent model (AFD model). The purpose of this paper is to prove availability of the analysis method by comparing numerical results and test results.

  • PDF