• Title/Summary/Keyword: coupling material

Search Result 892, Processing Time 0.025 seconds

Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak's foundation based on higher order shear deformation theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.439-455
    • /
    • 2019
  • This research deals with thermo-electro-mechanical buckling analysis of the sandwich nano-beams with face-sheets made of functionally graded carbon nano-tubes reinforcement composite (FG-CNTRC) based on the nonlocal strain gradient elasticity theory (NSGET) considering various higher-order shear deformation beam theories (HSDBT). The sandwich nano-beam with FG-CNTRC face-sheets is subjected to thermal and electrical loads while is resting on Pasternak's foundation. It is assumed that the material properties of the face-sheets change continuously along the thickness direction according to different patterns for CNTs distribution. In order to include coupling of strain and electrical field in equation of motion, the nonlocal non-classical nano-beam model contains piezoelectric effect. The governing equations of motion are derived using Hamilton principle based on HSDBTs and NSGET. The differential quadrature method (DQM) is used to calculate the mechanical buckling loads of sandwich nano-beam as well as critical voltage and temperature rising. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various HSDBTs, length scale parameter (strain gradient parameter), the nonlocal parameter, the CNTs volume fraction, Pasternak's foundation coefficients, various boundary conditions, the CNTs efficiency parameter and geometric dimensions on the buckling behaviors of FG sandwich nano-beam. The numerical results indicate that, the amounts of the mechanical critical load calculated by PSDBT and TSDBT approximately have same values as well as ESDBT and ASDBT. Also, it is worthy noted that buckling load calculated by aforementioned theories is nearly smaller than buckling load estimated by FSDBT. Also, similar aforementioned structure is used to building the nano/micro oscillators.

Rotational tolerances of a titanium abutment in the as-received condition and after screw tightening in a conical implant connection

  • Prisco, Rosario;Troiano, Giuseppe;Laino, Luigi;Zhurakivska, Khrystyna
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.343-350
    • /
    • 2021
  • PURPOSE. The success of an implant-prosthetic rehabilitation is influenced by good implant health and an excellent implant-prosthetic coupling. The stability of implant-prosthetic connection is influenced by the rotational tolerance between anti-rotational features on the implant and those on the prosthetic component. The aim of this study is to investigate the rotational tolerance of a conical connection implant system and its titanium abutment counterpart, in various conditions. MATERIAL AND METHODS. 10 preparable titanium abutments, having zero-degree angulation (MegaGen, Daegu, Korea) with an internal 5-degree conical connection, and 10 implants (MegaGen, Daegu, Korea) were used. Rotational tolerance between the connection of implant and titanium abutments was measured through the use of a tridimensional optics measuring system (Quick Scope QS250Z, Mitutoyo, Kawasaki, Japan) in the as-received condition (Time 0), after securing with a titanium screw tightening at 35 Ncm (Time 1), after tightening 4 times at 35 Ncm (Time 2), after tightening one more time at 45 Ncm (Time 3), and after tightening another 4 times at 45 Ncm (Time 4). RESULTS. The group "Time 0" had the lowest values of rotational freedom (0.22 ± 0.76 degrees), followed by the group Time 1 (0.46 ± 0.83 degrees), the group Time 2 (1.01 ± 0.20 degrees), the group Time 3 (1.30 ± 0.85 degrees), and the group Time 4 (1.49 ± 0.17 degrees). CONCLUSION. The rotational tolerance of a conical connection is low in the "as received" condition but increases with repetitive tightening and with application of a torque greater than 35 Ncm.

Seismic response of NFRP reinforced RC frame with shape memory alloy components

  • Varkani, Mohamad Motalebi;Bidgoli, Mahmood Rabani;Mazaheri, Hamid
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.285-295
    • /
    • 2022
  • Creation of plastic deformation under seismic loads, is one of the most serious subjects in RC structures with steel bars which reduces the life threatening risks and increases dissipation of energy. Shape memory alloy (SMA) is one of the best choice for the relocating plastic hinges. In a challenge to study the seismic response of concrete moment resisting frame (MRF), this article investigates numerically a new type of concrete frames with nano fiber reinforced polymer (NFRP) and shape memory alloy (SMA) hinges, simultaneously. The NFRP layer is containing carbon nanofibers with agglomeration based on Mori-Tanaka model. The tangential shear deformation (TASDT) is applied for modelling of the structure and the continuity boundary conditions are used for coupling of the motion equations. In SMA connections between beam and columns, since there is phase transformation, hence, the motion equations of the structure are coupled with kinetic equations of phase transformation. The Hernandez-Lagoudas theory is applied for demonstrating of pseudoelastic characteristics of SMA. The corresponding motion equations are solved by differential cubature (DC) and Newmark methods in order to obtain the peak ground acceleration (PGA) and residual drift ratio for MRF-2%. The main impact of this paper is to present the influences of the volume percent and agglomeration of nanofibers, thickness and length of the concrete frame, SMA material and NFRP layer on the PGA and drift ratio. The numerical results revealed that the with increasing the volume percent of nanofibers, the PGA is enhanced and the residual drift ratio is reduced. It is also worth to mention that PGA of concrete frame with NFRP layer containing 2% nanofibers is approximately equal to the concrete frame with steel bars.

Investigation of a fiber reinforced polymer composite tube by two way coupling fluid-structure interaction

  • Daricik, Fatih;Canbolat, Gokhan;Koru, Murat
    • Coupled systems mechanics
    • /
    • v.11 no.4
    • /
    • pp.315-333
    • /
    • 2022
  • Fluid-Structure Interaction (FSI) modeling is highly effective to reveal deformations, fatigue failures, and stresses on a solid domain caused by the fluid flow. Mechanical properties of the solid structures and the thermophysical properties of fluids can change under different operating conditions. In this study, we investigated the interaction of [45/-45]2 wounded composite tubes with the fluid flows suddenly pressurized to 5 Bar, 10 Bar, and 15 Bar at the ambient temperatures of 24℃, 66℃, and 82℃, respectively. Numerical analyzes were performed under each temperature and pressure condition and the results were compared depending on the time in a period and along the length of the tube. The main purpose of this study is to present the effects of the variations in fluid characteristics by temperature and pressure on the structural response. The variation of the thermophysical properties of the fluid directly affects the deformation and stress in the material due to the Wall Shear Stress (WSS) generated by the fluid flow. The increase or decrease in WSS directly affected the deformations. Results show that the increase in deformation is more than 50% between 5 Bar and 10 Bar for the same operating condition and it is more than 100% between 5 Bar and 15 Bar by the increase in pressure, as expected in terms of the solid mechanics. In the case of the increase in the temperature of fluid and ambient, the WSS and Von Mises stress decrease while the slight increases of deformations take place on the tube. On the other hand, two-way FSI modeling is needed to observe the effects of hydraulic shock and developing flow on the structural response of composite tubes.

Study of the longitudinal reinforcement in reinforced concrete-filled steel tube short column subjected to axial loading

  • Alifujiang Xiamuxi;Caijian Liu;Alipujiang Jierula
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.709-728
    • /
    • 2023
  • Experimental and analytical studies were conducted to clarify the influencing mechanisms of the longitudinal reinforcement on performance of axially loaded Reinforced Concrete-Filled Steel Tube (R-CFST) short columns. The longitudinal reinforcement ratio was set as parameter, and 10 R-CFST specimens with five different ratios and three Concrete-Filled Steel Tube (CFST) specimens for comparison were prepared and tested. Based on the test results, the failure modes, load transfer responses, peak load, stiffness, yield to strength ratio, ductility, fracture toughness, composite efficiency and stress state of steel tube were theoretically analyzed. To further examine, analytical investigations were then performed, material model for concrete core was proposed and verified against the test, and thereafter 36 model specimens with four different wall-thickness of steel tube, coupling with nine reinforcement ratios, were simulated. Finally, considering the experimental and analytical results, the prediction equations for ultimate load bearing capacity of R-CFSTs were modified from the equations of CFSTs given in codes, and a new equation which embeds the effect of reinforcement was proposed, and equations were validated against experimental data. The results indicate that longitudinal reinforcement significantly impacts the behavior of R-CFST as steel tube does; the proposed analytical model is effective and reasonable; proper ratios of longitudinal reinforcement enable the R-CFSTs obtain better balance between the performance and the construction cost, and the range for the proper ratios is recommended between 1.0% and 3.0%, regardless of wall-thickness of steel tube; the proposed equation is recommended for more accurate and stable prediction of the strength of R-CFSTs.

Assessment of nonlocal nonlinear free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Elnaz Zare;Daria K. Voronkova;Omid Faraji;Hamidreza Aghajanirefah;Hamid Malek Nia;Mohammad Gholami;Mojtaba Gorji Azandariani
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.473-487
    • /
    • 2024
  • The current study employs the nonlocal Timoshenko beam (NTB) theory and von-Kármán's geometric nonlinearity to develop a non-classic beam model for evaluating the nonlinear free vibration of bi-directional functionally-graded (BFG) nanobeams. In order to avoid the stretching-bending coupling in the equations of motion, the problem is formulated based on the physical middle surface. The governing equations of motion and the relevant boundary conditions have been determined using Hamilton's principle, followed by discretization using the differential quadrature method (DQM). To determine the frequencies of nonlinear vibrations in the BFG nanobeams, a direct iterative algorithm is used for solving the discretized underlying equations. The model verification is conducted by making a comparison between the obtained results and benchmark results reported in prior studies. In the present work, the effects of amplitude ratio, nanobeam length, material distribution, nonlocality, and boundary conditions are examined on the nonlinear frequency of BFG nanobeams through a parametric study. As a main result, it is observed that the nonlinear vibration frequencies are greater than the linear vibration frequencies for the same amplitude of the nonlinear oscillator. The study finds that the difference between the dimensionless linear frequency and the nonlinear frequency is smaller for CC nanobeams compared to SS nanobeams, particularly within the α range of 0 to 1.5, where the impact of geometric nonlinearity on CC nanobeams can be disregarded. Furthermore, the nonlinear frequency ratio exhibits an increasing trend as the parameter µ is incremented, with a diminishing dependency on nanobeam length (L). Additionally, it is established that as the nanobeam length increases, a critical point is reached at which a sharp rise in the nonlinear frequency ratio occurs, particularly within the nanobeam length range of 10 nm to 30 nm. These findings collectively contribute to a comprehensive understanding of the nonlinear vibration behavior of BFG nanobeams in relation to various parameters.

A Study on the Analysis of the Trends and Expression Techniques of Flower Jewelry (플라워 주얼리의 디자인 트렌드와 표현기법 분석에 관한 연구)

  • Kim, Yeon Hee;Kim, Mi Jin;Yun, Suk Young;Choi, Byung Jin
    • Journal of the Korean Society of Floral Art and Design
    • /
    • no.43
    • /
    • pp.123-138
    • /
    • 2020
  • This study found Flower Jewelry works in the monthly magazine specializing in flower decoration for nine years from 2011 to 2019. Based on the analysis of the type of expression, method of expression, type and number of plant materials used, and the type and number of non-plant materials used for the flower jewelry found, it was conducted to find out the trend of flower jewelry in Korea. By expression type, a total of 96 works were analyzed as 20.83% for headdresses, 57.29% for necklaces, 5.21% for earrings, 6.25% for lists, and 10.42% for other works(χ2=94.833, p<.001). According to the analysis of the frequency of use of expression techniques, headdresses, necklaces, and lists for each work were produced using five to six different expression techniques and earrings were produced using two to four expression techniques. Material coupling techniques 34.43%, flower and leaf utilization 30.17%, visual techniques 16.63%, collectivization techniques 14.12%, technical highlighting techniques 4.26%, and other 0.39% (χ2=455.222, p<.001). The most frequently used techniques were framing techniques 16.63% and knotting techniques 16.44%. Plant materials used in flower jewelry were found to be 22.61% for Phalaenopsis spp., 13.48% for Gomphrena globosa, 9.57% for Gloriosa rothschildiana, 7.39% for Epidendrum cinnabarinum, 6.96% for Chamelaucium uncinatum and 4.78% for Craspedia globosa (χ2=718.104, p<.001). In the case of branch, the most common was used with 70.00% of the Cornus walteri, and 10.00% of Actinidia arguta, Celastrus orbiculatus, and Salix pseudolasiogyne were used respectively (χ2=10.800, p=.013). In the case of foliage, 24.65% Aspidistra elatior, 24.62% Asparagus asparagoides, 11.54% Senecio rowleyanus, and 6.15% Ceropegia woodii (χ2=269.385, p<.001). In the case of berries, 44.44% of the fruits of the Smilax china, 33.33% of the Hypericum patulum, and 11.11% of the Phytolacca americana were found (χ2=11.444, p =.022). Non-planting materials used in the manufacture of flower jewelry were found to be 47.34% of 2mm aluminium wire, 33.73% of copper wire and 10.06% of 1mm aluminum wire (χ2=186.704, p<.001). The figure was 53.57% for pearls, 12.50% for ribbons, and 4.14% for spangles and feathers.

An Electrical Properties Analysis of CMOS IC by Narrow-Band High-Power Electromagnetic Wave (협대역 고출력 전자기파에 의한 CMOS IC의 전기적 특성 분석)

  • Park, Jin-Wook;Huh, Chang-Su;Seo, Chang-Su;Lee, Sung-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.535-540
    • /
    • 2017
  • The changes in the electrical characteristics of CMOS ICs due to coupling with a narrow-band electromagnetic wave were analyzed in this study. A magnetron (3 kW, 2.45 GHz) was used as the narrow-band electromagnetic source. The DUT was a CMOS logic IC and the gate output was in the ON state. The malfunction of the ICs was confirmed by monitoring the variation of the gate output voltage. It was observed that malfunction (self-reset) and destruction of the ICs occurred as the electric field increased. To confirm the variation of electrical characteristics of the ICs due to the narrow-band electromagnetic wave, the pin-to-pin resistances (Vcc-GND, Vcc-Input1, Input1-GND) and input capacitance of the ICs were measured. The pin-to-pin resistances and input capacitance of the ICs before exposure to the narrow-band electromagnetic waves were $8.57M{\Omega}$ (Vcc-GND), $14.14M{\Omega}$ (Vcc-Input1), $18.24M{\Omega}$ (Input1-GND), and 5 pF (input capacitance). The ICs exposed to narrow-band electromagnetic waves showed mostly similar values, but some error values were observed, such as $2.5{\Omega}$, $50M{\Omega}$, or 71 pF. This is attributed to the breakdown of the pn junction when latch-up in CMOS occurred. In order to confirm surface damage of the ICs, the epoxy molding compound was removed and then studied with an optical microscope. In general, there was severe deterioration in the PCB trace. It is considered that the current density of the trace increased due to the electromagnetic wave, resulting in the deterioration of the trace. The results of this study can be applied as basic data for the analysis of the effect of narrow-band high-power electromagnetic waves on ICs.

Preparation of Conductive PEDOT-PSMA Hybrid Thin Films Using Simultaneous Co-vaporized Vapor Phase Polymerization (동시-공증발 기상 중합을 이용한 전도성 PEDOT-PSMA 박막 제조)

  • Nodora, Kerguelen Mae;Yim, Jin-Heong
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.330-335
    • /
    • 2018
  • A new approach for the fabrication of organic-organic conducting composite thin films using simultaneous co-vaporization vapor phase polymerization (SC-VPP) of two or more monomers that have different polymerization mechanisms (i.e., oxidation-coupling polymerization and radical polymerization) was reported for the first time. In this study, a PEDOT-PSMA composite thin film consisting of poly(3,4-ethylenedioxythiophene)(PEDOT) and poly(styrene-co-maleic anhydride)(PSMA) was prepared by SC-VPP process. The preparation of organic-organic conductive composite thin films was confirmed through FT-IR and $^1H-NMR$ analyses. The surface morphology analysis showed that the surface of PEDOT-PSMA thin film was rougher than that of PEDOT thin film. Therefore, PEDOT-PSMA exhibited lower electrical conductivity than that of PEDOT. But the conductivity can be improved by adding 2-ethyl-4-methyl imidazole as a weak base. The contact angle of PEDOT-PSMA was about $50^{\circ}$, as compared to $62^{\circ}$ for PEDOT. The demonstrated methodology for preparing an organic-organic conductive hybrid thin film is expected to be useful for adjusting intrinsic conductive polymer (ICP)'s surface properties such as mechanical, optical, and roughness properties.

Effects of Pre-synthesized $BaTiO_3$ Addition on the Microstructure and Dielectric/ Piezoelectric Properties of $(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3$ Piezoelectric Ceramics

  • Khansur, Neamul Hayet;Yoon, Man-Soon;Kweon, Soon-Yong;Lee, Young-Geun;Ur, Soon-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.189-189
    • /
    • 2008
  • Due to the environmental issue vast research is going on to replace the widely used lead contented piezoelectric materials. Bismuth sodium titanate (abbreviated as BNT) based bismuth sodium titanate-barium titanate (abbreviated as BNBT) ceramic was prepared by using modified method rather than conventional mixed oxide method. This modification was made to improve the properties of BNT based ceramic. In this procedure $BaTiO_3$ (abbreviated as BT) was prepared using conventional mixed oxide method. Analytical grade raw materials of $BaCO_3$ and $TiO_2$ were weighted and ball milled using ethanol medium. The mixed slurry was dried and sieved under 80 mesh. Then the powder was calcined at $1100^{\circ}C$ for 2 hours. This calcined BT powder was used in the preparation of BNBT. Stoichiometric amount of $Bi_2O_3$, $Na_2CO_3$, $TiO_2$ and BT were weighted and mixed by using ball mill. The used calcination temperature was $850^{\circ}C$ for 2 hours. Calcined powder was taken for another milling step. BNBT disks were pressed to 15 mm of diameter and then cold isostatical press (CIP) was used. Pressed samples were sintered at $1150^{\circ}C$ for 2 hours. The SEM microstructure analysis revealed that the grain shape of the sintered ceramic was polyhedral and grain boundary was well matched where as the sample prepared by conventional method showed irregular arrangement and grain boundary not well matched. And sintered density was better (5.78 g/cc) for the modified method. It was strongly observed that the properties of BNBT ceramic near MPB composition was found to be improved by the modified method compare to the conventional mixed oxide method. The piezoelectric constant dB of 177.33 pC/N, electromechanical coupling factor $k_p$ of 33.4%, dielectric constant $K_{33}^T$ of 688.237 and mechanical quality factor $Q_m$ of 109.37 was found.

  • PDF