DOI QR코드

DOI QR Code

Preparation of Conductive PEDOT-PSMA Hybrid Thin Films Using Simultaneous Co-vaporized Vapor Phase Polymerization

동시-공증발 기상 중합을 이용한 전도성 PEDOT-PSMA 박막 제조

  • Nodora, Kerguelen Mae (Division of Advanced Material Engineering, Kongju National University) ;
  • Yim, Jin-Heong (Division of Advanced Material Engineering, Kongju National University)
  • ;
  • 임진형 (공주대학교 신소재공학부)
  • Received : 2018.03.31
  • Accepted : 2018.04.17
  • Published : 2018.06.10

Abstract

A new approach for the fabrication of organic-organic conducting composite thin films using simultaneous co-vaporization vapor phase polymerization (SC-VPP) of two or more monomers that have different polymerization mechanisms (i.e., oxidation-coupling polymerization and radical polymerization) was reported for the first time. In this study, a PEDOT-PSMA composite thin film consisting of poly(3,4-ethylenedioxythiophene)(PEDOT) and poly(styrene-co-maleic anhydride)(PSMA) was prepared by SC-VPP process. The preparation of organic-organic conductive composite thin films was confirmed through FT-IR and $^1H-NMR$ analyses. The surface morphology analysis showed that the surface of PEDOT-PSMA thin film was rougher than that of PEDOT thin film. Therefore, PEDOT-PSMA exhibited lower electrical conductivity than that of PEDOT. But the conductivity can be improved by adding 2-ethyl-4-methyl imidazole as a weak base. The contact angle of PEDOT-PSMA was about $50^{\circ}$, as compared to $62^{\circ}$ for PEDOT. The demonstrated methodology for preparing an organic-organic conductive hybrid thin film is expected to be useful for adjusting intrinsic conductive polymer (ICP)'s surface properties such as mechanical, optical, and roughness properties.

서로 다른 중합 메카니즘(산화 커플링 중합 및 라디칼 중합)을 가지는 둘 이상의 단량체를 동시에 공-증발 기상 중합(SC-VPP)을 하여 유기-유기 전도성 복합 박막을 제조하는 새로운 접근법을 보고한다. 본 연구에서는 SC-VPP 공정을 통해 poly(3,4-ethylenedioxythiophene)(PEDOT)와 poly(styrene-co-maleic anhydride)(PSMA)로 구성된 PEDOT-PSMA 복합 박막을 제조하였다. 유기-유기 전도성 복합체 박막의 제조는 FT-IR 및 $1^H-NMR$ 분석을 통해 확인되었다. 전자주사현미경을 통한 표면 형태학 분석으로 PEDOT-PSMA 박막이 PEDOT 박막보다 좀 더 거친 표면을 보였다. 이것은 소수성 특성을 가지는 PEDOT과 친수성 특성기를 가지는 PSMA와의 좋지 않은 상용성 때문이라고 생각된다. 따라서 PEDOT-PSMA는 PEDOT보다 낮은 전기 전도도를 나타내었지만 약염기인 2-ethyl-4-methyl imidazole을 첨가하면 크게 개선되었다. PEDOT-PSMA의 접촉각은 PEDOT의 경우 $62^{\circ}$에 비해 약 $50^{\circ}$로 친수성이 증가하였고, 이는, PSMA가 가지는 카르보닐기에 의한 것이라 판단된다. 제안된 SC-VPP 기반 유기-유기 하이브리드 박막 제조 경로를 통하여 다양한 고분자 전도성 박막의 표면 특성(친수특성, 기계적 강도, 광학특성 및 표면 거칠기) 등을 제어할 수 있다고 판단한다.

Keywords

References

  1. C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A G. MacDiarmid, Electrical conductivity in doped polyacethylene, Phys. Rev. Lett., 39, 1098-1101 (1977). https://doi.org/10.1103/PhysRevLett.39.1098
  2. M Irimia-Vladu, "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future, Chem. Soc. Rev., 43, 588-610 (2014). https://doi.org/10.1039/C3CS60235D
  3. M. Gerard, A. Chaubey, and B. D. Malhotra, Application of conducting polymers to biosensors, Biosens. Bioelectron., 17, 345-359 (2002). https://doi.org/10.1016/S0956-5663(01)00312-8
  4. N. K. Guimard, N. Gomez, and C. E. Schmidt, Conducting polymers in biomedical engineering, Prog. Polym. Sci., 32, 876-921 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.012
  5. P. A. Levermore, L. Chen, X. Wang, R. Das, Donal and D. C. Bradley, Highly conductive poly(3,4-ethylenedioxythiophene) films by vapor phase polymerization for application in efficient organic light-emitting diodes, Adv. Mater., 19, 2379-2385 (2007). https://doi.org/10.1002/adma.200700614
  6. D. M. Welsh, A. Kumar, E. W. Meijer, and J. R. Reynolds, Enhanced contrast ratios and rapid switching in electrochromics based on poly(3,4-propylenedioxythiophene)derivatives, Adv. Mater., 16, 1379-1382 (1999).
  7. K. S. Lee, J. H. Yun, Y.-H. Han, J.-H. Yim, N.-G. Park, K. Y. Cho, and J. H. Park, Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO-and Pt-less counter electrodes, J. Mater. Chem., 21, 15193-15196 (2011). https://doi.org/10.1039/c1jm13408f
  8. J. M. D'Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors, ACS Nano, 8, 1500-1510 (2014). https://doi.org/10.1021/nn405595r
  9. J. Ahn, J. S. Yoon, S. G. Jung, J.-H. Yim, and K. Y. Cho, A conductive thin layer on prepared positive electrodes by vapour reaction printing for high-performance lithium-ion batteries, J. Mater. Chem. A, 5, 21214-21222 (2017). https://doi.org/10.1039/C7TA05591A
  10. A. M. Nardes, M. Kemerink, M. M. D. Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, Conductivity, work function, and environmental stability of PEDOT : PSS thin films treated with sorbitol, Org. Electron., 9, 727-734 (2008). https://doi.org/10.1016/j.orgel.2008.05.006
  11. B. Somboonsub, M. A. Invernale, S. Thongyai, P. Praserthdam, D. A. Scola, and G. A. Sotzing, Preparation of the thermally stable conducting polymer PEDOT-sulfonated poly(imide), Polymer, 51, 1231-1236 (2010). https://doi.org/10.1016/j.polymer.2010.01.048
  12. Y. Wei, J.-M. Yeh, D. Jin, X. Jia, J. Wang, G.-W. Jang, C. Chen, and R. W. Gumbs, Composites of electronically conductive polyaniline with polyacrylate - silica hybrid sol-gel materials, Chem. Mater., 7, 969-974 (1995). https://doi.org/10.1021/cm00053a024
  13. X. Zeng, T. Zhou, C. Leng, Z. Zang, M. Wang, W. Hu, X. Tang, S. Lu, L. Fang, and M. Zhou, Performance improvement of perovskite solar cells by employing a CdSe quantum dot/PCBM composite as an electron transport layer, J. Mater. Chem. A, 5, 17499-17505 (2017). https://doi.org/10.1039/C7TA00203C
  14. Y. S. Ko and J.-H. Yim, Synergistic enhancement of electrical and mechanical properties of polypyrrole thin films by hybridization of $SO_2$ with vapor phase polymerization, Polymer, 93, 167-173 (2016). https://doi.org/10.1016/j.polymer.2016.04.030
  15. J.-Y. Kim, M.-H. Kwon, Y.-K. Min, S. Kwon, and D.-W. Ihm, Self-assembly and crystalline growthof poly(3,4-ethylenedioxythiophene) nanofilms, Adv. Mater., 19, 3501-3506 (2007). https://doi.org/10.1002/adma.200602163
  16. A. Mohammadi, M. Hasan, B. Liedberg, I. Lundstrom, and W. Salaneck, Chemical vapour deposition (CVD) of conducting polymers: Polypyrrole, Synth. Met., 14, 189-197 (1986). https://doi.org/10.1016/0379-6779(86)90183-9
  17. J. Kim, E. Kim, Y. Won, H. Lee, and K. Suh, The preparation and characteristics of conductive poly(3,4-ethylenedioxythiophene) thin film by vapor-phase polymerization, Synth. Met., 139, 485-489 (2003). https://doi.org/10.1016/S0379-6779(03)00202-9
  18. B. Winther-Jensen, D. W. Breiby, and K. West, Base inhibited oxidative polymerization 3,4-ethylenedioxithiophene with iron(III)tosylate, Synth. Met., 152, 1-4 (2005). https://doi.org/10.1016/j.synthmet.2005.07.085
  19. J. P. Lock, S. G. Im, and K. K. Gleason, Oxidative chemical vapor deposition of electrically conducting poly(3,4-ethylenedioxythiophene) films, Macromolecules, 39, 5326-5329 (2006). https://doi.org/10.1021/ma060113o
  20. M. Fabretto, M. Muller, C. Hall, P. Murphy, R. D. Short, and H. J. Griesser, In-situ QCM-D analysis reveals four distinct stages during vapour phase polymerisation of PEDOT thin films, Polymer, 51, 1737-1743 (2010). https://doi.org/10.1016/j.polymer.2010.02.019
  21. J. S. Choi, K. Y. Cho, and J.-H. Yim, Micro-patterning of vapor-phase polymerized poly(3,4-ethylenedioxythiophene)(PEDOT) using ink-jet printing/soft lithography, Eur. Polym. J., 46, 389-396 (2010). https://doi.org/10.1016/j.eurpolymj.2009.11.010
  22. Y.-H. Han and J.-H. Yim, A study on the electrical and optical properties of micro-pattern of Polypyrrole (PPy) by using vapor phase polymerization, Polymer(Korea), 34, 450-453 (2010).
  23. J. Jang and B. Lim, Facile fabrication of inorganic-polymer core shell nanostructures by a one-step vapor deposition polymerization, Angew. Chem., 115, 5758-5761 (2003). https://doi.org/10.1002/ange.200352113
  24. M. Choi, B. Lim, and J. Jang, Synthesis of mesostructured conducting polymer-carbon nanocomposites and their electrochemical performance, Macromol. Res., 16, 200-203 (2008). https://doi.org/10.1007/BF03218853
  25. W. E. Tenhaeff and K. K. Gleason, Initiated and oxidative chemical vapor deposition of polymeric thin films: iCVD and oCVD, Adv. Funct. Mater., 18, 979-992 (2008). https://doi.org/10.1002/adfm.200701479
  26. A. Asatekin, M. C. Barr, S. H. Baxamura, K. K. S. Lau, W. Tenhaeff, J. Xu, and K. K. Gleason, Designing polymer surfaces via vapor deposition, Mater. Today, 13, 26-33 (2010). https://doi.org/10.1016/S1369-7021(10)70081-X
  27. W. E. Tenhaeff and K. K. Gleason, Initiated chemical vapor deposition of alternating copolymers of styrene and maleic anhydride, Langmuir, 23(12), 6624-6630 (2007). https://doi.org/10.1021/la070086a
  28. K. Chan and K. K. Gleason, Initiated CVD of poly (methyl methacrylate) thin films, Chem. Vap. Deposition, 11, 437-443 (2005). https://doi.org/10.1002/cvde.200506381
  29. A. T. Lawal and G. G. Wallace, Vapour phase polymerisation of conducting and non-conducting polymers: A review, Talanta, 119, 133-143 (2014). https://doi.org/10.1016/j.talanta.2013.10.023
  30. Y.-H. Han, J. T-Sejdic, B. Wright, and J.-H. Yim, Simultaneous vapor phase polymerization of PEDOT and a siloxane into organic/inorganic hybrid thin films, Macromol. Chem. Phys., 212, 521-530 (2011). https://doi.org/10.1002/macp.201000634
  31. J.-H. Yim, Mechanically robust poly(3,4-ethylenedioxythiophene)? $SiO_2$ hybrid conductive film prepared by simultaneous vapor phase polymerization, Compos. Sci. Tech., 86, 45-51 (2013). https://doi.org/10.1016/j.compscitech.2013.06.023
  32. R. Khadka and J.-H. Yim, Influence of base inhibitor and surfactant on the electrical and physicochemical properties of PEDOT-$SO_2$ hybrid conductive films, Macromol. Res., 23, 559-565 (2015). https://doi.org/10.1007/s13233-015-3079-0
  33. Y. S. Ko and J.-H. Yim, Synergistic enhancement of electrical and mechanical properties of polypyrrole thin films by hybridization of $SO_2$ with vapor phase polymerization, Polymer, 93, 167-173 (2016). https://doi.org/10.1016/j.polymer.2016.04.030
  34. S. W. Kim, S. W. Lee, J. Kim, J.-H. Yim, and K. Y. Cho, Three-dimensional, high-porosity conducting skeletal structure from biodegradable microparticles with vapor-phase polymerized conformal surface layer, Polymer, 102, 127-135 (2016). https://doi.org/10.1016/j.polymer.2016.09.008
  35. J. S. Choi, J. S. Park, B. Kim, B.-T. Lee, and J.-H. Yim, In vitro biocompatibility of vapour phase polymerised conductive scaffolds for cell lines, Polymer, 120, 95-100 (2017).
  36. J. Ahn, S. Yoon, S. G. Jung, J.-H. Yim, and K. Y. Cho, A conductive thin layer on prepared positive electrodes by vapour reaction printing for high-performance lithium-ion batteries, J. Mater. Chem. A, 5, 21214-21222 (2017). https://doi.org/10.1039/C7TA05591A
  37. S. K. Jung, K. Y. Cho, and J.-H. Yim, Porous PEDOT-$SO_2$ hybrid conductive micro particles prepared by simultaneous co-vaporized vapor phase polymerization, J. Ind. Eng. Chem., 63, 95-102 (2018). https://doi.org/10.1016/j.jiec.2018.02.003
  38. B. Winther-Jensen and K. West, Vapor-phase polymerization of 3, 4-ethylenedioxythiophene: a route to highly conducting polymer surface layers, Macromolecules, 37, 4538-4543 (2004). https://doi.org/10.1021/ma049864l
  39. D. O. Kim, P.-C. Lee, S.-J. Kang, K. Jang, J.-H. Lee, M. H. Cho, and J.-D. Nam, In-situ blends of polypyrrole/poly(3,4-ethylenedioxythiopene) using vapor phase polymerization technique, Thin Solid Films, 517, 4156-4160 (2009). https://doi.org/10.1016/j.tsf.2009.02.028
  40. K.-S. Jang, D. O. Kim, J.-H. Lee, S.-C. Hong, T.-W. Lee, Y. Lee, and J.-D. Nam, Synchronous vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) and poly(3-hexylthiophene) copolymer systems for tunable optoelectronic properties, Org. Electron., 11, 1668-1675 (2010). https://doi.org/10.1016/j.orgel.2010.07.006
  41. S. Nair, E. Hsiao, and S. H. Kim, Melt-welding and improved electrical conductivity of non woven porous nanofiber mats of poly(3,4-ethylenedioxythiophene) grown on electrospun polystyrene fiber template, Chem. Mater., 21, 115-121 (2009). https://doi.org/10.1021/cm8029449
  42. D. Yan, X. Xu, G. Ma, and J. Sheng, Low temperature plasma-nitiated precipitation copolymerization of styrene and maleic anhydride, J. Appl. Polym. Sci., 125, 1352-1356 (2012). https://doi.org/10.1002/app.35173
  43. D. M. de Leeuw, P. A. Kraakman, P. F. G. Bongaerts, C. M. J. Mutsaers, and D. B. M. Klaassen, Electroplating of conductive polymers for the metallization of insulators, Synth. Met., 66(3), 263-273 (1994). https://doi.org/10.1016/0379-6779(94)90076-0
  44. Y. H. Ha, N. Nikolov, S. K. pollack, J. Masstrangelo, and B. D. Martin, Towards a transparent, highly conductive Poly(3,4-ethylenedioxythiophene), Adv. Funct. Mater., 14, 615-622 (2004). https://doi.org/10.1002/adfm.200305059