DOI QR코드

DOI QR Code

Synthesis of P3HT-b-P4VP via Anionic Polymerization and its Physical Properties in Various Solvents

음이온 중합법 기반 P3HT-b-P4VP 블록공중합체 정밀 합성 및 이의 용매에 따른 물리적 특성 변화 연구

  • Hwang, Sung Yeon (Advanced Materials and Chemical Engineering, University of Science and Technology (UST)) ;
  • Park, Jeyoung (Advanced Materials and Chemical Engineering, University of Science and Technology (UST)) ;
  • Oh, Dongyeop X. (Advanced Materials and Chemical Engineering, University of Science and Technology (UST))
  • 황성연 (과학기술연합대학원대학교) ;
  • 박제영 (과학기술연합대학원대학교) ;
  • 오동엽 (과학기술연합대학원대학교)
  • Received : 2018.03.20
  • Accepted : 2018.04.17
  • Published : 2018.06.10

Abstract

In general, the synthesis of poly(3-hexylthiophene)(P3HT)-based block copolymers requires at least a 4-5 step process. To control the molecular weight, molecular weight distribution, and block ratio, the reaction conversion and time should be monitored. In addition, the reaction scale usually limited to several mg to g was difficult to increase due to the limitations of living radical polymerizations. In this study, we synthesized P3HT-b-poly(4-vinylprydine) (P3HT-b-P4VP) with a final product quantity of > 19 g via a 2-step synthetic method with an anionic polymerization. In this method, the molecular weight and molecular weight distribution of P3HT-b-P4VP can be well controlled without monitoring the reaction conversion. We also studied physical properties of P3HT-b-P4VP depending on different solvent systems, which were investigated by UV-vis spectroscopy, atomic force microscopy, and ultraviolet photoelectron spectroscopy.

기존의 문헌에서는 poly(3-hexylthiophene)(P3HT) 기반의 블록공중합체를 합성하기 위해서 최소 4-5단계 이상의 복잡한 공정을 거쳐야 했고, 일반적으로 분자량, 분자량 분포 및 블록의 비를 조절하기 위해서 단량체 전환율 및 반응 시간을 계속해서 모니터링 해야 한다. 또한, 여러 가지 이유에서 합성 스케일이 수 mg에서 수 g으로 제한되었다. 본 연구에서는 음이온 중합법을 이용해서 P3HT-b-poly(4-vinylprydine) (P4VP)를 오직 2단계로 중합할 수 있었으며, 중합 스케일은 수십 g 정도가 가능하였다. 반응 도중 단량체 전환율 및 농도를 계속 모니터링 해야 하는 번거로움 없이 초기 단량체 당량비만으로 블록 비율과 분자량 분포를 정밀 조절할 수 있었다. 만들어진 P3HT-b-P4VP를 친수성 및 소수성 용매에 녹여 분자 거동을 살펴보았다. 용액의 특성이 용액 속 미셸 구조와 필름 코팅 후 모포로지에 영향을 미친다는 것을 확인했다. P3HT-b-P4VP의 물리적 특성은 적외선-자외선 분광분석법, 원자힘현미경 및 자외선 광전자 분광분석법을 이용하여 평가하였다.

Keywords

References

  1. J. K. Kim, S. Y. Yang, Y. Lee, and Y. Kim, Functional nanomaterials based on block copolymer self-assembly, Prog. Polym. Sci., 35, 1325-1349 (2010). https://doi.org/10.1016/j.progpolymsci.2010.06.002
  2. H. C. Moon, A. Anthonysamy, J. K. Kim, and A. Hirao, Facile synthetic route for well-defined poly(3-hexylthiophene)-block-poly(methyl methacrylate) copolymer by anionic coupling reaction, Macromolecules, 44, 1894-1899 (2011). https://doi.org/10.1021/ma200171m
  3. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%, Adv. Mater., 22, E135-E138 (2010). https://doi.org/10.1002/adma.200903528
  4. D. Qian, L. Ye, M. Zhang, Y. Liang, L. Li, Y. Huang, X. Guo, S. Zhang, Z. A. Tan, and J. Hou, Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state, Macromolecules, 45, 9611-9617 (2012). https://doi.org/10.1021/ma301900h
  5. M. Jang, Y. C. Yu, H. Jeon, J. H. Youk, and H. Yang, Air-processable silane-coupled polymers to modify a dielectric for solution-processed organic semiconductors, ACS Appl. Mater. Interfaces, 7, 5274-5280 (2015). https://doi.org/10.1021/am508573q
  6. R. D. McCullough, The chemistry of conducting polythiophenes, Adv. Mater., 10, 93-116 (1998). https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<93::AID-ADMA93>3.0.CO;2-F
  7. D. Lee, D. H. Sin, S. W. Kim, H. Lee, H. R. Byun, J. Mun, W. Sung, B. Kang, D. G. Kim, H. Ko, S. W. Song, M. S. Jeong, J. Rho, and K. Cho, Singlet exciton delocalization in gold nanoparticle-tethered poly(3-hexylthiophene) nanofibers with enhanced intrachain ordering, Macromolecules, 50, 8487-8496 (2017). https://doi.org/10.1021/acs.macromol.7b01416
  8. D. Lee, J. Lee, K.-H. Song, H. Rhee, and D.-J. Jang, Formation and decay of charge carriers in aggregate nanofibers consisting of poly(3-hexylthiophene)-coated gold nanoparticles, Phys. Chem. Chem. Phys., 18, 2087-2096 (2016). https://doi.org/10.1039/C5CP06514C
  9. H.-J. Kim, Y. J. Lee, S. S. Hwang, D. H. Choi, H. Yang, and K.-Y. Baek, Synthesis of multiarmed poly(3-hexyl thiophene) star polymer with microgel core by GRIM and ATRP methods, J. Polym. Sci. A, 49, 4221-4226 (2011).
  10. C. R. Craley, R. Zhang, T. Kowalewski, R. D. McCullough, and M. C. Stefan, Regioregular poly(3-hexylthiophene) in a novel conducting amphiphilic block copolymer, Macromol. Rapid Commun., 30, 11-16 (2009). https://doi.org/10.1002/marc.200800487
  11. M. C. Iovu, R. Zhang, J. R. Cooper, D. M. Smilgies, A. E. Javier, E. E. Sheina, T. Kowalewski, and R. D. McCullough, Conducting block copolymers of regioregular poly(3-hexylthiophene) and poly (methacrylates): Electronic materials with variable conductivities and degrees of interfibrillar order, Macromol. Rapid Commun., 28, 1816-1824 (2007). https://doi.org/10.1002/marc.200700401
  12. M. C. Iovu, C. R. Craley, M. Jeffries-El, A. B. Krankowski, R. Zhang, T. Kowalewski, and R. D. McCullough, Conducting regioregular polythiophene block copolymer nanofibrils synthesized by reversible addition fragmentation chain transfer polymerization (RAFT) and nitroxide mediated polymerization (NMP), Macromolecules, 40, 4733-4735 (2007). https://doi.org/10.1021/ma070406x
  13. K. Palaniappan, N. Hundt, P. Sista, H. Nguyen, J. Hao, M. P. Bhatt, Y.-Y. Han, E. A. Schmiedel, E. E. Sheina, M. C. Biewer, and M. C. Stefan, Block copolymer containing poly(3-hexylthiophene) and poly(4-vinylpyridine): Synthesis and its interaction with CDSE quantum dots for hybrid organic applications, J. Polym. Sci. A, 49, 1802-1808 (2011). https://doi.org/10.1002/pola.24605
  14. M. R. Kern and S. G. Boyes, RAFT polymerization kinetics and polymer characterization of P3HT rod-coil block copolymers, J. Polym. Sci. A, 52, 3575-3585 (2014).
  15. R. H. Lohwasser and M. Thelakkat, Synthesis of amphiphilic rod-coil P3HT-b-P4VP carrying a long conjugated block using NMRP and click chemistry, Macromolecules, 45, 3070-3077 (2012). https://doi.org/10.1021/ma2024733
  16. N. Sary, F. Richard, C. Brochon, N. Leclerc, P. Leveque, J.-N. Audinot, S. Berson, T. Heiser, G. Hadziioannou, and R. Mezzenga, A new supramolecular route for using rod-coil block copolymers in photovoltaic applications, Adv. Mater., 22, 763-768 (2010). https://doi.org/10.1002/adma.200902645
  17. V. Gernigon, P. Leveque, F. Richard, N. Leclerc, C. Brochon, C. H. Braun, S. Ludwigs, D. V. Anokhin, D. A. Ivanov, G. Hadziioannou, and T. Heiser, Microstructure and optoelectronic properties of P3HT-b-P4VP/PCBM blends: Impact of PCBM on the copolymer self-assembly, Macromolecules, 46, 8824-8831 (2013). https://doi.org/10.1021/ma4010692
  18. M. Kamigaito, T. Ando, and M. Sawamoto, Metal-catalyzed living radical polymerization, Chem. Rev., 101, 3689-3746 (2001). https://doi.org/10.1021/cr9901182
  19. K. Matyjaszewski, Atom transfer radical polymerization (ATRP): Current status and future perspectives, Macromolecules, 45, 4015-4039 (2012). https://doi.org/10.1021/ma3001719
  20. C.-A. Dai, W.-C. Yen, Y.-H. Lee, C.-C. Ho, and W.-F. Su, Facile synthesis of well-defined block copolymers containing regioregular poly(3-hexyl thiophene) via anionic macroinitiation method and their self-assembly behavior, J. Am. Chem. Soc., 129, 11036-11038 (2007). https://doi.org/10.1021/ja0733991
  21. M. Lee, H. Jeon, M. Jang, and H. Yang, A physicochemical ap- proach toward extending conjugation and the ordering of sol- ution-processable semiconducting polymers, ACS Appl. Mater. Interfaces, 8, 4819-4827 (2016). https://doi.org/10.1021/acsami.5b12552
  22. S. Lee, H. Jeon, M. Jang, K.-Y. Baek, and H. Yang, Tunable solubility parameter of poly(3-hexyl thiophene) with hydrophobic side-chains to achieve rubbery conjugated films, ACS Appl. Mater. Interfaces, 7, 1290-1297 (2015). https://doi.org/10.1021/am507512m
  23. Y. J. Lee, S. H. Kim, H. Yang, M. Jang, S. S. Hwang, H. S. Lee, and K.-Y. Baek, Vertical conducting nanodomains self-assembled from poly(3-hexyl thiophene)-based diblock copolymer thin films, J. Phys. Chem. C, 115, 4228-4234 (2011). https://doi.org/10.1021/jp109208n
  24. J. Kim, S.-Y. Choi, K. M. Kim, D. H. Go, H. J. Jeon, J. Y. Lee, H. S. Park, C. H. Lee, and H. M. Park, An efficient method for synthesis of PEO-based macromonomer and macroinitiator, Macromol. Res., 15, 337-342 (2007). https://doi.org/10.1007/BF03218796
  25. N.-G. Kang, M. Changez, and J.-S. Lee, Living anionic polymerization of the amphiphilic monomer 2-(4-vinylphenyl) pyridine, Macromolecules, 40, 8553-8559 (2007). https://doi.org/10.1021/ma071349a