• Title/Summary/Keyword: coupler characteristics

Search Result 228, Processing Time 0.029 seconds

Design of Polarization-Insensitive Directional Couplers and Multimode Interference Couplers Integrated with Bragg Grating Waveguide (Bragg 격자구조가 집적된 편광 무의존성 방향성 결합기와 다중모드 간섭 결합기의 설계)

  • Ho, Kwang-Chun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.295-302
    • /
    • 2007
  • This paper presents a rigorous comparison of the design characteristics of polarization-insensitive directional coupler (DC) and multimode interference (MMI) coupler based on rib type waveguides, by using longitudinal modal transmission-line theory (L-MTLT). It shows that the multimode mixing and interference property of MMI can be structurally designed through the continuous evolution of the two-mode coupling property of DC. It also compares and analyzes the coupling efficiency along with the coupling length and the wavelength between polarization-insensitive DC and MMI. From the design properties obtained, it demonstrates for the first time the integration of polarization-insensitive DC or MMI with a Bragg grating and evaluates precisely the filtering characteristics. The numerical results reveal that the DC, as long as it is designed to have the same coupling length for TE and TM modes, has better performance than the MMI in polarization-insensitive filtering behaviour. However, it shows that the MMI with much less coupling length than DC is preferred in the miniaturization of integrated devices.

Effect of wing width and thickness on the polarization characteristics of vertical directional couplers using the Double-Sided Deep-Ridge waveguide structure (Double-Sided Deep-Ridge 도파관 구조 수직 방향성 결합기의 날개구조부 폭과 두께가 편광 특성에 미치는 영향)

  • 정병민;윤정현;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.293-298
    • /
    • 2004
  • We investigate the effect of the wing width and thickness of a Double-Sided Deep-Ridge(DSDR) vertical directional coupler on the coupling length dependent on the polarization, We have found that the DSDR vertical directional coupler without a wing does not have polarization independent coupling lengths. The variation of the coupling length of TE and TM modes and the difference between the coupling lengths of the two modes are negligible as the wing width increases beyond the specific wing width for the same wing thickness. Thus, we can see that a DSDR vertical directional coupler has a wing width larger than the minimum wing width to obtain the polarization independent coupling length. The minimum wing width increases as the wing thickness increases for the same core thickness and as the core thickness decreases for the same wing width. Also, we have found that the minimum wing thickness is determined by the core thickness and the minimum wing thickness decreases as the core thickness increases.

Effectiveness of Beam-propagation-method Simulations for the Directional Coupling of Guided Modes Evaluated by Fabricating Silica Optical-waveguide Devices (광도파로 모드 간의 방향성 결합현상에 대한 빔 진행 기법 설계의 효율성 및 실리카 광도파로 소자 제작을 통한 평가)

  • Jin, Jinung;Chun, Kwon-Wook;Lee, Eun-Su;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.137-145
    • /
    • 2022
  • A directional coupler device, one of the fundamental components of photonic integrated circuits, distributes optical power by evanescent field coupling between two adjacent optical waveguides. In this paper, the design process for manufacturing a directional coupler device is reviewed, and the accuracy of the design results, as seen from the characteristics of the actual fabricated device, is confirmed. When designing a directional coupler device through a two-dimensional (2D) beam-propagation-method (BPM) simulation, an optical structure is converted to a two-dimensional planar structure through the effective index method. After fabricating the directional coupler device array, the characteristics are measured. To supplement the 2D-BPM results that are different from the experimental results, a 3D-BPM simulation is performed. Although 3D-BPM simulation requires more computational resources, the simulation result is closer to the experimental results. Furthermore, the waveguide core refractive index used in 3D-BPM is adjusted to produce a simulation result consistent with the experimental results. The proposed design procedure enables accurate design of directional coupler devices, predicting the experimental results based on 3D-BPM.

A New Dual Band Branch Line Hybrid Coupler with Arbitrary Power Division Ratio (임의의 분배비를 갖는 새로운 이중 대역 가지 선로 결합기)

  • Kim, Kwi-Soo;Gwon, Chil-Hyeun;Dorjsuren, Baatarkhuu;Lim, Jong-Sik;Ahn, Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.444-449
    • /
    • 2009
  • This paper presents the design of a dual band branch line hybrid coupler(BLHC) with different power division ratios at two bands. In the proposed design, transmission lines of the BLHC are transformed to $\pi$-type equivalent circuits which represent different impedances and $\lambda/4$ electrical length at two frequency bands. In order to verify the proposed method, a dual band coupler with different power division ratios is designed for 0.9 GHz and 2 GHz applications. The desired power division ratios are 1:1 and 1:3 at the two operating frequency bands. The measured results show excellent performance with an insertion loss of less than 0.33 dB, a return loss of less than -18.07 dB, and good isolation characteristics.

A Design of the Dual Directional Coupler with Unequal Coupling Value (비대칭 결합도를 갖는 이중 방향성 결합기 설계)

  • Kim, Chul-Soo;Park, Jun-Seok;Ahn, Dal
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.1-7
    • /
    • 1999
  • The demands for the various type of directional coupler, which is for the sampling of the signal levels in mobile communication baseband or transceiver systems, are growing. The proposed dual directional coupler, which has three parallel coupled transmission lines, can provide the dual coupling and good isolation characteristics between the coupling ports. In this paper, the novel analysis method and the design equation of even and odd mode for the dual directional coupler, which is employing the asymmetrically coupled transmission lines, are proposed. Using the proposed method, the dual directional coupler for PCS system has been designed and fabricated. We obtained the desired coupling value and the high directivity of 40dB. Measured results show the validity of this design method.

  • PDF

Implementation of Polarization-Insensitive Directional Coupler using Curved Waveguides (곡면형 도파로를 사용한 편광 무의존성 방향성 결합기의 구현)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.239-244
    • /
    • 2016
  • The polarization characteristics of polarization-insensitive directional coupler based on double sandwiched rib-type and curved waveguides are explored in detail by using conformal transformation method (CTM) and longitudinal modal transmission-line theory(L-MTLT). To obtain the polarization-insensitive condition of polarization-insensitive curved directional coupler(PI-CDC), the coupling length and coupling efficiency according to the inner radius of PI-CDC are analyzed for quasi-TE and quasi-TM modes. The numerical results show that the PI-CDC with a few micrometer scales can be realized by properly choosing the curvature and structural and material parameters of double sandwiched layers. Furthermore, the mode profiles propagating through PI-CDC are evaluated, and the influence on coupler performance has been investigated.

The Design and Characteristics of the Inductive Coupler Using the Nanocrystalline Materials (나노 결정립 재료를 이용한 비접촉식 커플러의 설계 및 특성)

  • Kim, Jong-Ryung;Kim, Hyun-Sik;Huh, Jeong-Sub;Lee, Hae-Yeon;Lee, Jun-Hui;Oh, Young-Woo;Byun, Woo-Bong
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.300-304
    • /
    • 2006
  • The varied heating temperatures were used for magnetic core materials, which nano sized ${\alpha}-Fe$ crystalline was created in nanocrystalline Fe-Si-B-Nb-Cu materials, with hish permeability and low power loss. The highest permeability and lowest power loss were obtained to the specimen heat-treated at $510^{\circ}C$. The signal transmission characteristics of inductive coupler, which was manufactured by using the magnetic core materials prepared in this study, at low frequency range, was influenced strongly by magnetic property of magnetic core materials as this result is corresponding to the permeability as a function of heat treatment temperature, as well, it was improved by impedance matching at high frequency range. Over $500{\mu}m$ of air gap in coupler is required to maintain the magnetic properties without magnetic saturation on the subterranean line transferred hish current of 300 A. The inductive coupler for PLC, which has an attenuation characteristics of less than 5dB, was manufactured using nano-crystalline magnetic core materials through the above mentioned research results.

Analysis of Medium Voltage Power-Line Channel Characteristics Considering the Skin Effect (표피효과를 고려한 중전압 전력선 채널특성 분석)

  • 김선효;이원태;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.731-738
    • /
    • 2002
  • In this paper, we analyzed a medium voltage power line characteristics considering the skin effect for high speed data transmission. Medium power-line characteristics impedance was obtained by the S-parameter method which is used in high frequency band. Power line channel characteristics was measured using it designed coupler, it is a wide band coupler between medium powe-line and measurement system. Attenuation characteristics along the frequency was decreased linearly when skin effect was considered but attenuation characteristics along the frequency was decreased linearly when skin effect was not considered. Impedance was showed lower and lower in proportional to frequency, and variation was decreased in proportional to frequency.

The optical coupling characteristics of $K^{+}$ and $Ag^{+}$ ion-exchanged waveguide ($K^{+}$$Ag^{+}$ 이온교환 도파로의 광결합 특성)

  • 김홍석;이병석;천석표;이현용;정흥배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.284-287
    • /
    • 1996
  • In this paper, we investigated the optical coupling characteristics for $K^{+}$ ion-exchanged diffused channel waveguide by using coupled-mode equations. In this case, the optical-power-dividing was observed at the waveguide-type optical coupler with 3[$\mu\textrm{m}$] line-width and, 6[$\mu\textrm{m}$] separation between channel waveguides in which interaction lengths were 1 and 3[mm], respectively, On the basis of that we deformed simulation for $Ag^{+}$ ion-exchanged diffused channel waveguide. As a result of simulation, the optical-power-dividing was shown at the waveguide-type optical coupler wish 3[$\mu\textrm{m}$] line-width, 6[$\mu\textrm{m}$] separation between channel waveguides and 0.11[mm] interaction length.

  • PDF