• Title/Summary/Keyword: coupled walls

Search Result 106, Processing Time 0.017 seconds

Plastic hinge length for coupled and hybrid-coupled shear walls

  • Abouzar Jafari;Meysam Beheshti;Amir Ali Shahmansouri;Habib Akbarzadeh Bengar
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.367-383
    • /
    • 2023
  • A coupled wall consists of two or more reinforced concrete (RC) shear walls (SWs) connected by RC coupling beams (CBs) or steel CBs (hybrid-coupled walls). To fill the gap in the literature on the plastic hinge length of coupled walls, including coupled and hybrid-coupled shear walls, a parametric study using experimentally validated numerical models was conducted considering the axial stress ratio (ASR) and coupling ratio (CR) as the study variables. A total of sixty numerical models, including both coupled and hybrid-coupled SWs, have been developed by varying the ASR and CR within the ranges of 0.027-0.25 and 0.2-0.5, respectively. A detailed analysis was conducted in order to estimate the ultimate drift, ultimate capacity, curvature profile, yielding height, and plastic hinge length of the models. Compared to hybrid-coupled SWs, coupled SWs possess a relatively higher capacity and curvature. Moreover, increasing the ASR changes the walls' behavior to a column-like member which decreases the walls' ultimate drift, ductility, curvature, and plastic hinge length. Increasing the CR of the coupled SWs increases the walls' capacity and the risk of abrupt shear failure but decreases the walls' ductility, ultimate drift and plastic hinge length. However, CR has a negligible effect on hybrid-coupled walls' ultimate drift and moment, curvature profile, yielding height and plastic hinge length. Lastly, using the obtained results two equations were derived as a function of CR and ASR for calculating the plastic hinge length of coupled and hybrid-coupled SWs.

An Estimate of the Yield Displacement of Coupled Walls for Seismic Design

  • Hernandez-Montes, Enrique;Aschheim, Mark
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.275-284
    • /
    • 2017
  • A formula to estimate the yield displacement observed in the pushover analysis of coupled wall lateral force-resisting systems is presented. The estimate is based on the results of an analytical study of coupled walls ranging from 8 to 20 stories in height, with varied amounts of reinforcement in the reinforced concrete coupling beams and walls, subjected to first-mode pushover analysis. An example illustrates the application of these estimates to the performance-based seismic design of coupled walls.

Towards achieving the desired seismic performance for hybrid coupled structural walls

  • Hung, Chung-Chan;Lu, Wei-Ting
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1251-1272
    • /
    • 2015
  • It is widely recognized that the preferred yielding mechanism for a hybrid coupled wall structure is that all coupling beams over the height of the structure yield in shear prior to formation of plastic hinges in structural walls. The objective of the study is to provide feasible approaches that are able to promote the preferred seismic performance of hybrid coupled walls. A new design methodology is suggested for this purpose. The coupling ratio, which represents the contribution of coupling beams to the resistance of system overturning moment, is employed as a fundamental design parameter. A series of nonlinear time history analyses on various representative hybrid coupled walls are carried out to examine the adequacy of the design methodology. While the proposed design method is shown to be able to facilitate the desired yielding mechanism in hybrid coupled walls, it is also able to reduce the adverse effects caused by the current design guidelines on the structural design and performance. Furthermore, the analysis results reveal that the state-of-the-art coupled wall design guidelines could produce a coupled wall structure failing to adequately exhaust the energy dissipation capacity of coupling beams before walls yield.

Closed-form and numerical solution of the static and dynamic analysis of coupled shear walls by the continuous method and the modified transfer matrix method

  • Mao C. Pinto
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.49-68
    • /
    • 2023
  • This study investigates the static and dynamic structural analysis of symmetrical and asymmetrical coupled shear walls using the continuous and modified transfer matrix methods by idealizing the coupled shear wall as a three-field CTB-type replacement beam. The coupled shear wall is modeled as a continuous structure consisting of the parallel coupling of a Timoshenko beam in tension (with axial extensibility in the shear walls) and a shear beam (replacing the beam coupling effect between the shear walls). The variational method using the Hamilton principle is used to obtain the coupled differential equations and the boundary conditions associated with the model. Using the continuous method, closed-form analytical solutions to the differential equation for the coupled shear wall with uniform properties along the height are derived and a numerical solution using the modified transfer matrix is proposed to overcome the difficulty of coupled shear walls with non-uniform properties along height. The computational advantage of the modified transfer matrix method compared to the classical method is shown. The results of the numerical examples and the parametric analysis show that the proposed analytical and numerical model and method is accurate, reliable and involves reduced processing time for generalized static and dynamic structural analysis of coupled shear walls at a preliminary stage and can used as a verification method in the final stage of the project.

Experimental studies on seismic behavior of steel coupling beams

  • Park, Wan-Shin;Yun, Hyun-Do;Chung, Jae-Yong;Kim, Yong-Chul
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.695-712
    • /
    • 2005
  • Hybrid coupled shear walls in tall buildings are known as efficient structural systems to provide lateral resistance to wind and seismic loads. Multiple hybrid coupled shear walls throughout a tall building should be joined to provide additional coupling action to resist overturning moments caused by the lateral loading. This can be done using a coupling beam which connects two shear walls. In this study, experimental studies on the hybrid coupled shear wall were carried out. The main test variables were the ratios of coupling beam strength to connection strength. Finally, this paper provides background for rational design guidelines that include a design model to behave efficiently hybrid coupled shear walls.

A study on the behaviour of coupled shear walls

  • Bhunia, Dipendu;Prakash, Vipul;Pandey, Ashok D.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.645-675
    • /
    • 2012
  • An effective design technique for symmetrical coupled shear walls is presented. Proposed formulation including assumptions and steps with mathematical formulation has been elaborated to make the design technique. An example has been considered to validate the technique with the DRAIN-3DX (1993) and SAP V 10.0.5 (2000) nonlinear programs. Parametric study has also been considered to find out the limitations along with remedial action of this technique. On the other hand, nonlinear static analysis is considered to determine the response reduction factor of coupled shear walls. Finally, it has been concluded in this paper that the proposed design technique can be considered to design the coupled shear walls under seismic motion.

Effect of the height of SCSW on the optimal position of the stiffening beam considering axial force effect

  • Azar, B. Farahmand;Hadidi, A.;Khosravi, H.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.299-312
    • /
    • 2012
  • Stiffened coupled shear walls (SCSW) are under axial load resulting from their weight and this axial load affects the behavior of walls because of their excessive height. In this paper, based on the continuum approach, the optimal position of the stiffening beam on the stiffened coupled shear walls is investigated considering the effect of uniformly distributed axial loads. Moreover, the effect of the height of stiffened coupled shear walls on the optimal position of the stiffening beam has been studied with and without considering the axial force effect. A computer program has been developed in MATLAB and numerical examples have been solved to demonstrate the reliability of this method. The effects of the various flexural rigidities of the stiffening beam on the internal forces and the lateral deflection of the structure considering axial force effect have also been investigated.

Structural Performance of Hybrid Coupled Shear Wall System Considering Connection Details (접합부 상세에 따른 복합 병렬 전단벽 시스템의 구조 성능)

  • Park, Wan Shin;Yun, Hyun Do;Kim, Sun Woong;Jang, Young Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.128-137
    • /
    • 2012
  • In high multistory buildings, hybrid coupled shear walls can provide an efficient structural system to resist horizontal force due to wind and seismic loads. Hybrid coupled shear walls are usually built over the whole height of the building and are laid out either as a series of walls coupled by steel beams with openings to accommodate doors, elevator walls, windows and corridors. In this paper, the behavior characteristics of hybrid coupled shear wall system considering connection details is examined through results of an experimental research program where 5 two-thirds scale specimens were tested under cyclic loading. Such connections details are typically employed in hybrid coupling wall system consisting of steel coupling beams and reinforced concrete shear wall. The test variables of this study are embedment length of steel coupling beam and wall thickness of concrete shear wall. The results and discussion presented in this paper provide fundamental data for seismic behavior of hybrid coupled shear wall systems.

The Application of a Direct Coupled BEM-FEM Model to Predict the TL Characteristics of Simple Expansion Silencers with Vibratory Walls (진동 벽면을 가진 단순 확장형 소음기 모델의 투과손실 특성 해석을 위한 DIRECT BEM-FEM 연성 모델의 적용)

  • Choi, C.H.;Kim, H.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.24-30
    • /
    • 1998
  • A directly coupled Boundary Element and Finite Element Model was applied to the dynamic analysis of a coupled acoustic silencer with vibratory wall. In this cupled BEM-FEM muffler model, the BEM model was used to discretize the acoustic cavity and the FEM model was used to discretize the vibratory wall structure. Then the BEM model was coupled with the FEM model. The results of the coupled BEM-FEM model for the dynamic analysis of the simple expansion type reactive muffler configurations with flexible walls were verified by comparing the predicted results to analytical solutions. In order to investigate the effects of the muffler's structural flexibility on its transmission loss(TL) characteristics, the results of the coupled BEM-FEM model in conjunction with the four-pole parameter theory were utilized. The muffler's TL characteristics using the BEM-FEM coupled model with flexible walls as compared to other muffler configurations was studied. Finally the muffler's TL values with respect to different wall's thickness are predicted and compared.

  • PDF