• Title/Summary/Keyword: coupled properties

Search Result 1,004, Processing Time 0.029 seconds

Feasible approach of contactless power transfer technology combined with HTS coils based on electromagnetic resonance coupling

  • Chung, Yoon Do;Yim, Seong Woo;Hwang, Si Dole
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • The contactless power transfer (CPT) systems have been recently gaining popularity widely since it is an available option to realize the power delivery and storage with connector-free devices across a large air gap. Especially, the CPT with electromagnetic resonance coupling method is possible to exchange energy within 2 m efficiently. However, the power transfer efficiency of CPT in commercialized products has been limited because the impedance matching of coupled coils is sensitive. As a reasonable approach, we combined the CPT system with HTS wire technology and called as, superconducting contactless power transfer (SUCPT) system. Since the superconducting coils have an enough current density, the superconducting antenna and receiver coils at CPT system have a merit to deliver and receive a mass amount of electric energy. In this paper, we present the feasibility of the SUCPT system and examine the transmission properties of SUCPT phenomenon between room temperature and very low temperature at 77 K as long as the receiver is within 1.0 m distance.

Piezoelectric Characteristics of Pb(Mnsub 1/3Nb 23)Osub 3-Pb(Zr, Ti)Osub 3 Ceramics with $CeO_2$ Impurity for the Piezoelectric Transformer (Cerium Oxide 첨가에 따른 압전트랜스포머용 $Pb(Mn_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3$ 세라믹의 압전특성)

  • Ryu, Ju-Hyeon;Seo, Seong-Jae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.611-615
    • /
    • 1999
  • Piezoelectric properties of PMN-PZT ceramics with $CeO_2$ impurity were investigated. Mechanical quality factor, $Q_m$ of 1792, 1285 and the electromechanical coupling coefficient, $k_p$ of 0.52, 0.54 were obtained from the specimen with 0.25 and 0.5 mole % $CeO_2$ respectively. Curie temperature was decreased with the addition of $CeO_2$ while the electric coercive field was proportional to the amount of impurity. Based on the system ceramics with 0.5 mole % cerium oxide, a Rosen type piezoelectric transformer was fabricated and tested. Voltage step-up ratios of 230 and 13 were obtained from the transformer at no load and $100 k\Omega$ resistance, respectively. Experimental results showed a potential of the transformer for the practical use coupled with the expected strength increase by the grain size refinement.

  • PDF

Properties of Temperature and Brightness Applied on Frequency in Electrodeless Fluorescent Lamp (무전극 형광램프의 주파수 변화에 따른 온도 및 광속 특성)

  • Lee, Joo-Ho;Choi, Gi-Seung;Kim, Nam-Goon;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1273-1274
    • /
    • 2006
  • In recent, it became necessary to develop the technology about electrodeless fluorescent lamp according to demand of the electrodeless fluorescent lamp system that used higher efficiency and advantage of long lifetime. Inductively coupled plasma is commonly used for electrodeless lamp due to its ease of plasma generation. An electric power efficiency of electrodeless fluorescent lamp has big relative property of gas in lamp, gas pressure, lamp formation, ingredients of magnetic substance and shape and action frequency etc. We used magnetic substance that open self-examination material of electrodeless fluorescent lamp antenna. Ferrite that is used in this experiment was Mn-Zn type. We have examined temperature and flux characteristic by frequency. Considering using frequency 2.65[MHz], Frequency was changed from 2.05[MHz] to 3.05[MHz] to recognize flux and temperature change of lamp. I used LMS(Lighting Measurement System) to measure flux and IR Camera to measure temperature of lamp.

  • PDF

The Dry Etching Properties of TaN Thin Film Using Inductively Coupled Plasma

  • Woo, Jong-Chang;Joo, Young-Hee;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.287-291
    • /
    • 2012
  • We investigated the etching characteristics of TaN thin films in an $O_2/BCl_3/Cl_2/Ar$ gas using a high density plasma (HDP) system. A maximum etch rate of the TaN thin films and the selectivity of TaN to $SiO_2$ were obtained as 172.7 nm/min and 6.27 in the $O_2/BCl_3/Cl_2/Ar$ (3:2:18:10 sccm) gas mixture, respectively. At the same time, the etch rate was measured as a function of the etching parameters, such as the RF power, DC-bias voltage, and process pressure. The chemical states on the surface of the etched TaN thin films were investigated using X-ray photoelectron spectroscopy. Auger electron spectroscopy was used for elemental analysis on the surface of the etched TaN thin films. These surface analyses confirm that the surface of the etched TaN thin film is formed with the nonvolatile by-product.

The Chemical Structure and Photoconductivity Properties of Thin Films Fabricated by Plasma Polymerization Method (플라즈마 중합법에 의해 제작된 PHENYL ISOTHIOCYANATE 박막의 화학적구조와 광전도 특성)

  • Kim, Sung-O;Park, Bok-Kee;Kim, Du-Seok;Park, Jin-Kyo;Choi, Chung-Seong;Lee, Duck-Chool
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1555-1559
    • /
    • 1997
  • The thin films were obtained by plasma polymerization of phenyl isothiocyanate. Polymerizations were carried out in rf(13.56[MHz]) glow discharge generated in an inter-electrode capacitively coupled gas flow system. It was found that this monomer produces uniform films with a wide range of thicknesses, from hundreds of nanometers to tens of micrometers. The deposition rate appeared to be dependent on the substrate distance from the monomer inlet. The IR data revealed significant decrease in -NCS groups content in the polymer as compared with the monomer spectrum and indicated for the appearance of new absorption bands corresponding to the -CN and C-H aliphatic groups. The soluble fraction by GC was found to be composed of numerous low molecular-weight compounds.

  • PDF

Dynamic behavior of a functionally graded plate resting on Winkler elastic foundation and in contact with fluid

  • Shafiee, Ali A.;Daneshmand, Farhang;Askari, Ehsan;Mahzoon, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.53-71
    • /
    • 2014
  • A semi-analytical method is developed to consider free vibrations of a functionally graded elastic plate resting on Winkler elastic foundation and in contact with a quiescent fluid. Material properties are assumed to be graded distribution along the thickness direction according to a power-law in terms of the volume fractions of the constituents. The fluid is considered to be incompressible and inviscid. In the analysis, the effect of an in-plane force in the plate due to the weight of the fluid is taken into account. By satisfying the compatibility conditions along the interface of fluid and plate, the fluid-structure interaction is taken into account and natural frequencies and mode shapes of the coupled system are acquired by employing energy methods. The results obtained from the present approach are verified by those from a finite element analysis. Besides, the effects of volume fractions of functionally graded materials, Winkler foundation stiffness and in-plane forces on the dynamic of plate are elucidated.

A numerical analysis on the performance of buckling restrained braces at fire-study of the gap filler effect

  • Talebi, Elnaz;Tahir, Mahmood Md.;Zahmatkesh, Farshad;Kueh, Ahmad B.H.
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.661-678
    • /
    • 2015
  • Buckling Restrained Braces (BRB) have been widely used in the construction industry as they utilize the most desirable properties of both constituent materials, i.e., steel and concrete. They present excellent structural qualities such as high load bearing capacity, ductility, energy-absorption capability and good structural fire behaviour. The effects of size and type of filler material in the existed gap at the steel core-concrete interface as well as the element's cross sectional shape, on BRB's fire resistance capacity was investigated in this paper. A nonlinear sequentially-coupled thermal-stress three-dimensional model was presented and validated by experimental results. Variation of the samples was described by three groups containing, the steel cores with the same cross section areas and equal yield strength but different materials (metal and concrete) and sizes for the gap. Responses in terms of temperature distribution, critical temperature, heating elapsed time and contraction level of BRB element were examined. The study showed that the superior fire performance of BRB was obtained by altering the filler material in the gap from metal to concrete as well as by increasing the size of the gap. Also, cylindrical BRB performed better under fire conditions compared to the rectangular cross section.

Design and fabrication of holographic combiner for automotive head-up display (Head-Up Display 용 홀로그래픽 광결합기의 설계 및 제작)

  • 유호식;정만호
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.120-127
    • /
    • 1999
  • We discussed two main types-conformal and non-conformal (powered) - of holographic combiner. A theoretical model based on the Kogelnik's coupled wave theory was used to illustrate bandwidth and efficiency properties. Also we showed numerical values for the aberrations that are induced by a wavelength shift from construction to reconstruction and found optimum coordinates to reduce the chrolatic aberation of construction beams using aberration balancing techniques. The holographic combiner manufactured in conformal type with 60$^{\circ}$ incidence angle at 514.5 nm had narrow angular bandwidth (FWHM) of 4.1" and spectral bandwidth of 11.4 nm, while non-conformal one with 50$^{\circ}$, 30$^{\circ}$ incidence angle at 514.5 nm showed spectral and angular bandwidth of 10.7 nm and 5.5$^{\circ}$, respectively.vely.

  • PDF

Global hydroelastic analysis of ultra large container ships by improved beam structural model

  • Senjanovic, Ivo;Vladimir, Nikola;Tomic, Marko;Hadzic, Neven;Malenica, Sime
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1041-1063
    • /
    • 2014
  • Some results on the hydroelasticity of ultra large container ships related to the beam structural model and restoring stiffness achieved within EU FP7 Project TULCS are summarized. An advanced thin-walled girder theory based on the modified Timoshenko beam theory for flexural vibrations with analogical extension to the torsional problem, is used for formulation of the beam finite element for analysis of coupled horizontal and torsional ship hull vibrations. Special attention is paid to the contribution of transverse bulkheads to the open hull stiffness, as well as to the reduced stiffness of the relatively short engine room structure. In addition two definitions of the restoring stiffness are considered: consistent one, which includes hydrostatic and gravity properties, and unified one with geometric stiffness as structural contribution via calm water stress field. Both formulations are worked out by employing the finite element concept. Complete hydroelastic response of a ULCS is performed by coupling 1D structural model and 3D hydrodynamic model as well as for 3D structural and 3D hydrodynamic model. Also, fatigue of structural elements exposed to high stress concentration is considered.

Low-Temperature Plasma Enhanced Chemical Vapor Deposition Process for Growth of Graphene on Copper

  • Ma, Yifei;Jang, Hae-Gyu;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.433-433
    • /
    • 2013
  • Graphene, $sp^2$-hybridized 2-Dimension carbon material, has drawn enormous attention due to its desirable performance of excellent properties. Graphene can be applied for many electronic devices such as field-effect transistors (FETs), touch screen, solar cells. Furthermore, indium tin oxide (ITO) is commercially used and sets the standard for transparent electrode. However, ITO has certain limitations, such as increasing cost due to indium scarcity, instability in acid and basic environments, high surface roughness and brittle. Due to those reasons, graphene will be a perfect substitute as a transparent electrode. We report the graphene synthesized by inductive coupled plasma enhanced chemical vapor deposition (ICP-PECVD) process on Cu substrate. The growth was carried out using low temperature at $400^{\circ}C$ rather than typical chemical vapor deposition (CVD) process at $1,000^{\circ}C$ The low-temperature process has advantage of low cost and also low melting point materials will be available to synthesize graphene as substrate, but the drawback is low quality. To improve the quality, the factor affect the quality of graphene was be investigated by changing the plasma power, the flow rate of precursors, the scenario of precursors. Then, graphene film's quality was investigated with Raman spectroscopy and sheet resistance and optical emission spectroscopy.

  • PDF