DOI QR코드

DOI QR Code

The Dry Etching Properties of TaN Thin Film Using Inductively Coupled Plasma

  • Woo, Jong-Chang (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Joo, Young-Hee (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
  • Received : 2012.07.07
  • Accepted : 2012.09.06
  • Published : 2012.12.25

Abstract

We investigated the etching characteristics of TaN thin films in an $O_2/BCl_3/Cl_2/Ar$ gas using a high density plasma (HDP) system. A maximum etch rate of the TaN thin films and the selectivity of TaN to $SiO_2$ were obtained as 172.7 nm/min and 6.27 in the $O_2/BCl_3/Cl_2/Ar$ (3:2:18:10 sccm) gas mixture, respectively. At the same time, the etch rate was measured as a function of the etching parameters, such as the RF power, DC-bias voltage, and process pressure. The chemical states on the surface of the etched TaN thin films were investigated using X-ray photoelectron spectroscopy. Auger electron spectroscopy was used for elemental analysis on the surface of the etched TaN thin films. These surface analyses confirm that the surface of the etched TaN thin film is formed with the nonvolatile by-product.

Keywords

References

  1. G. D. Wilk, E. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001). https://doi.org/10.1063/1.1361065
  2. T. Kitagawa, K. Nakamura, K. Osari, K. Takahashi, K. Ono, M. Oosawa, S. Hasaka, and M. Inoue, Jpn. J. Appl. Phys. 45, L297 (2006). https://doi.org/10.1143/JJAP.45.L297
  3. A. I. Kingon, J. I. Maria, and S. K. Streiffer, Nature. 406, 1032 (2000). https://doi.org/10.1038/35023243
  4. H. Shimada, and K. Maruyama, Jpn. J. Appl. Phys. 43, 1768 (2004). https://doi.org/10.1143/JJAP.43.1768
  5. A. L. Gouil, O. Joubert, G. Cunge, T. Chevolleau, L. Vallier, B. Chenevier, and I. Mitko, J. Vac. Sci. Technol. B 25, 767 (2007). https://doi.org/10.1116/1.2732736
  6. R. Ramos, G. Cunge, and O. Joubert, J. Vac. Sci. Technol. B 26, 181 (2008). https://doi.org/10.1116/1.2830637
  7. Q. Xie, X. P. Qu, J. J. Tan, Y. L. Jiang, M. Zhou, T. Chen, and G. P. Ru, Appl. Surf. Sci. 253, 1666 (2006). https://doi.org/10.1016/j.apsusc.2006.03.002
  8. A. Furuya, E. Soda, M. Shimada, and S Ogawa, Jpn. J. Appl. Phys. 44, 7430 (2005). https://doi.org/10.1143/JJAP.44.7430
  9. M. S. Jo, S. H. Kim, J. M. Lee, S. J. Jung, and J. B. Park, Appl. Phys. Lett. 96, 142110 (2010). https://doi.org/10.1063/1.3384999
  10. V. Bliznetsov, r. kumar, L. K. Bera, L. W. Yip, A. du, and T. E. Hui, Thin Solid Films 504, 140 (2006) https://doi.org/10.1016/j.tsf.2005.09.158
  11. J. H. Ko, D. Y. Kim, M. S. Park, N. E. Lee, S. S. Lee, J. H. Ahn, and H. S. Mok, J. Vac. Sci. Technol. A 25, 990 (2007). https://doi.org/10.1116/1.2747621
  12. V. Bliznetsov, R. Kumar, L. K. Bera, L. W. Yip, A. Du, and T. E. Hui, Thin Solid Films 504, 140 (2006). https://doi.org/10.1016/j.tsf.2005.09.158
  13. T. Kitagawa, K. Nakamura, K. Osari, K. Takahashi, K. Ono, M. Oosawa, S. Hasaka, and M. Inoue, Jap. J. appl. Phys. 45, L297 (2006) https://doi.org/10.1143/JJAP.45.L297
  14. J. C. Woo, D. S. Um, and C. I. Kim, Thin Solid Fimls 518, 2905 (2010). https://doi.org/10.1016/j.tsf.2009.10.144
  15. G. H. Kim, K. T. Kim, D. P. Kim, and C. I. Kim, Thin Solid Films 475, 86 (2005). https://doi.org/10.1016/j.tsf.2004.08.028
  16. J. Chen, W. J. Yoo, Z. Y. Tan, Y. Wang, and D. S. H. Chan, J. Vac. Sci. Technol. A 22, 1552 (2004). https://doi.org/10.1116/1.1705590
  17. J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, J. Vac. Sci. Technol. B 21, 2163 (2003). https://doi.org/10.1116/1.1612517
  18. W. S. Hwang, J. Chen, W. J. Yoo, and V. Bliznetsov, J. Vac. Sci. Technol. A 23, 964 (2005). https://doi.org/10.1116/1.1927536
  19. G. H. Kim, C. I. Kim, and A. M. Efremov, Vacuum 79, 231 (2005) https://doi.org/10.1016/j.vacuum.2005.03.012
  20. A. M. Efremov, D. P. Kim, C. I. Kim, Thin Solid Films 435, 83 (2003) https://doi.org/10.1016/S0040-6090(03)00378-X
  21. H. K. Kim, J. W. Bae, T. K. Kim, K. K. Kim, T. Y. Seong, and I. Adesida, J. Vac. Sci. Technol. B 21, 1273 (2003). https://doi.org/10.1116/1.1575250
  22. H. Helot, T. Chevolleau, L. Vallier, O. Joubert, E. Blanquet, A. Pisch, P. Mangiagalli, and T. Lill, J. Vac. Sci. Technol. A 24, 30 (2006). https://doi.org/10.1116/1.2134707
  23. M. H. Shin, S. W. Na, N. E. Lee, and J. H. Ahn, Thin Solid Films 506-507, 230 (2006) https://doi.org/10.1016/j.tsf.2005.08.019
  24. B. H. Lee, K. Kang, W. J. Qi, R. Nich, Y. Jem, K. Onishi, and J. C. Lee, Tech. Dig. Int. Electron Devices Meet. 149, 133 (1999).
  25. C. N. Kirchner, K. H. Hallmeier, R. Szargan, T. Raschke, C. Radehaus, and G. Wittstock, Electroanalysis 19, 1023 (2007). https://doi.org/10.1002/elan.200703832
  26. S. H. N. Lim, D. G. McCulloch, M. M. M. Bilek, D. R. McKenzie, J. Plessis, M. V. Swain, and R. Wuhrer, Surf. Coat. Technol. 201, 396 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.141