• Title/Summary/Keyword: coupled problem

Search Result 779, Processing Time 0.03 seconds

Development of Numerical Model of Electrode for Radiofrequency Catheter Ablation Considering Saline Irrigation and Temperature-controlled Radiofrequency System (온도 조절형 고주파 시스템 및 식염수 분사를 고려한 전극도자절제술용 전극의 수치 모델 개발)

  • Ahn, Jin-Woo;Kim, Young-Jin;Lee, Seung-A;Jung, Ha-Chul;Kim, Kyung-Ah;Cha, Eun-Jong;Moon, Jin-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.285-290
    • /
    • 2017
  • Radiofrequency catheter ablation is the interventional therapy that be employed to eliminate cardiac tissue caused by arrhythmias. During radiofrequency catheter ablation, The thrombus can occur at electrode tip if the temperature of tissue and electrode is excess $100^{\circ}C$. To prevent this phenomenon, we investigated numerical model of electrode for radiofrequency catheter ablation considering saline irrigation and temperature-controlled radiofrequency system. The numerical model is based on coupled electric-thermal-flow problem and solved by COMSOL Multiphysics software. The results of the models show that the dimensions of the thermal lesion are increased if the flow rate of the saline irrigation and the set temperature are increased. The surface width characterized to determine the thermal lesion isn't need to measure in temperature-controlled radiofrequency system due to convective heat transfer by saline irrigation at tissue-electrode interface.

Measurements of Correct Operation of a HTS 4-bit Shift Register Circuit (4-비트 고온초전도 Shift Register 회로의 동작 측정)

  • Park, Jong-Hyeog;Kim, Young-Hwan;Kang, Joon-Hee;Hahn, Taek-Sang;Kim, Chang-Hoon;Lee, Jong-Min;Choi, Sang-Sam
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.102-106
    • /
    • 1999
  • We have designed and fabricated a four-bit shift register circuit using YBCO bicrystal junctions and experimentally tested its operations by a computer-controlled digital measurement set-up. Laser ablated YBCO thin films with clean surface were used in this work. The circuit consists of the shift register and two read SQUIDs placed next to each sides of the shift register. The SQUIDs were inductively coupled to the nearby shift register stages. A probe equipped with high speed coax lines were used in this experiment. The major obstacle in testing the circuit was the interference between the read SQUIDs and we solved the problem by finding the correct operation points of the SQUIDs from the simultaneously measured modulation curves. Loaded Data("1" or "0") were successfully shifted from a stage to the next one by a controlled current pulse injected to the bias lines located between the stages and the data shifts were correctly monitored by the read SQUIDs

  • PDF

An Algorithm for Measurement of Pack Ice Concentration Using Localized Binarization of Quadtree-Subdivided Image (쿼드트리 분할영상의 국부이진화를 통한 팩아이스 집적도 측정 알고리즘)

  • Lee, Jeong-Hoon;Byun, Seok-Ho;Nam, Jong-Ho;Cho, Seong-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • Recently, many research works on the icebreaking vessels have been published as the possibility of passing Arctic routes has been increasing. The model ship test on the pack ice model in the ice basin is actively carried out as a way to investigate the performance of icebreaking vessels. In this test, the concentration of pack ice is important since it directly affects the performance. However, it is difficult to measure the concentration because not only the pack ice has uneven shape but also it keeps floating around in the basin. In this paper, an algorithm to identify the concentration of pack ice is introduced. From a digital image of pack ice obtained in the ice basin, the goal is to measure the area of pack ice using an image processing technique. Instead of the general global binarization that yields numerical errors in this problem, a local binarization technique, coupled with image subdivision based on the quadtree structure, is developed. The concentration results obtained by the developed algorithm are compared with the manually measured data to prove its accuracy.

Services Identification based on Use Case Recomposition (유스케이스 재구성을 통한 서비스 식별)

  • Kim, Yu-Kyong
    • The Journal of Society for e-Business Studies
    • /
    • v.12 no.4
    • /
    • pp.145-163
    • /
    • 2007
  • Service-Oriented Architecture is a style of information systems that enables the creation of applications that are built by combining loosely coupled and interoperable services. A service is an implementation of business functionality with proper granularity and invoked with well-defined interface. In service modeling, when the granularity of a service is finer, the reusability and flexibility of the service is lower. For solving this problem concerns with the service granularity, it is critical to identify and define coarse-grained services from the domain analysis model. In this paper, we define the process to identify services from the Use Case model elicited from domain analysis. A task tree is derived from Use Cases and their descriptions, and Use Cases are reconstructed by the composition and decomposition of the task tree. Reconstructed Use Cases are defined and specified as services. Because our method is based on the widely used UML Use Case models, it can be helpful to minimize time and cost for developing services in various platforms and domains.

  • PDF

Excitonic Energy Transfer of Cryptophyte Phycocyanin 645 Complex in Physiological Temperature by Reduced Hierarchical Equation of Motion

  • Lee, Weon-Gyu;Rhee, Young Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.858-864
    • /
    • 2014
  • Recently, many researches have shown that even photosynthetic light-harvesting pigment-protein complexes can have quantum coherence in their excitonic energy transfer at cryogenic and physiological temperatures. Because the protein supplies such noisy environment around pigments that conventional wisdom expects very short lived quantum coherence, elucidating the mechanism and searching for an applicability of the coherence have become an interesting topic in both experiment and theory. We have previously studied the quantum coherence of a phycocyanin 645 complex in a marine algae harvesting light system, using Poisson mapping bracket equation (PBME). PBME is one of the applicable methods for solving quantum-classical Liouville equation, for following the dynamics of such pigment-protein complexes. However, it may suffer from many defects mostly from mapping quantum degrees of freedom into classical ones. To make improvements against such defects, benchmarking targets with more accurately described dynamics is highly needed. Here, we fall back to reduced hierarchical equation of motion (HEOM), for such a purpose. Even though HEOM is known to applicable only to simplified system that is coupled to a set of harmonic oscillators, it can provide ultimate accuracy within the regime of quantum-classical description, thus providing perfect benchmark targets for certain systems. We compare the evolution of the density matrix of pigment excited states by HEOM against the PBME results at physiological temperature, and observe more sophisticated changes of density matrix elements from HEOM. In PBME, the population of states with intermediate energies display only monotonically increasing behaviors. Most importantly, PBME suffers a serious issue of wrong population in the long time limit, likely generated by the zero-point energy leaking problem. Future prospects for developments are briefly discussed as a concluding remark.

The Dual-Mode Ring-Resonator Bandpass Filter Using Artificial-Transmission-Lines (인공전송선로를 이용한 이중모드 링-공진기 대역통과 여파기)

  • Sim, Kyung-sub;Hwang, Hee-yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.424-429
    • /
    • 2016
  • This paper presents dual-mode ring-resonator bandpass filter using LUC of artificial-transmission-lines. The conventional ring-resonator bandpass filter has limitation in miniaturization because the conventional ring-resonator is based on a one wavelength operation, and problem due to undesire harmonics. The ring-resonator bandpass filter is miniaturized and show higher order mode rejection by configuring a ring-resonator with LUC of artificial-transmission-lines. The two-stage bandpass filter is designed and fabricated with a ring-resonator and input/output interdigital coupled line. A fabricated filter shows dual-mode, rejection of whole ultra wide band, sharp skirt characteristics and has ring area reduced by 60 % compared to the conventional ring-resonator bandpass filter.

The Design and Experiment of Piezoelectric Energy-Harvesting Device Imitating Seaweed (해조류를 모방한 압전 에너지 수확 장치의 설계와 실험)

  • Kang, Tae-Hun;Na, Yeong-Min;Lee, Hyun-Seok;Park, Jong-Kyu;Park, Tae-Gone
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.73-84
    • /
    • 2015
  • Electricity generation using fossil fuels has caused environmental pollution. To solve this problem, research on new renewable energy sources (solar, wind power, geothermal heat, etc.) to replace fossil fuels is ongoing. These devices are able to generate power consistently. However, they have many weaknesses, such as high installation costs and limits to possible setup environments. Therefore, an active study on piezoelectric harvesting technology that is able to surmount the limitations of existing energy technologies is underway. Piezoelectric harvesting technology uses the piezoelectric effect, which occurs in crystals that generate voltage when stress is applied. Therefore, it has advantages, such as a wider installation base and lower technological costs. In this study, a piezoelectric harvesting device imitating seaweed, which has a consistent motion caused by fluid, is used. Thus, it can regenerate electricity at sea or on a bridge pillar, which has a constant turbulent flow. The components of the device include circuitry, springs, an electric generator, and balancing and buoyancy elements. Additionally, multiphysics analysis coupled with fluid, structure, and piezoelectric elements is conducted using COMSOL Multiphysics to evaluate performance. Through this program, displacement and electric power were analyzed, and the actual performance was confirmed by the experiment.

A Study on Equivalent Modal Damping Values of Soil-Structure Coupling Models (지반-구조물 연계모델의 등가감쇠값에 관한 연구)

  • Park, Hyung Ghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.241-248
    • /
    • 1987
  • The theoretical backgrounds of the several methods were surveyed and reviewed to fin out the adequate one to determine equivalent modal damping values in solving the dynamic problem of soil-structure interaction by mode superposition method. Furthermore the rigorous damping matrix of equation of motion was obtained through component mode synthesis technique and used in direct integration of the equation. The analytical results by direct integration method were compared with those of mode superposition approach using the various sets of equivalent modal damping values calculated by the methods to be reviewed. Two types of superstructures and four kinds of subsurface conditions were considered and combined to make soil-structure coupled models. It was realized that dissipating energy method gives the equivalent modal damping values which lead the most similar results to direct integration ones. In case of fixed base, the responses of all methods except stiffness weighted approach are almost equal to those of direct integration method.

  • PDF

Self-control of high rise building L-shape in plan considering soil structure interaction

  • Farghaly, A.A.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.229-249
    • /
    • 2017
  • A new technique to mitigate irregular buildings with soil structure interaction (SSI) effect subjected to critical seismic waves is presented. The L-shape in plan irregular building for various reasons was selected, subjected to seismic a load which is a big problem for structural design especially without separation gap. The L-shape in plan building with different dimensions was chosen to study, with different rectangularity ratios and various soil kinds, to show the effect of the irregular building on the seismic response. A 3D building subjected to critical earthquake was analyzed by structural analysis program (SAP2000) fixed and with SSI (three types of soils were analyzed, soft, medium and hard soils) to find their effect on top displacement, base shear, and base torsion. The straining actions were appointed and the treatment of the effect of irregular shape under critical earthquake was made by using tuned mass damper (TMD) with different configurations with SSI and without. The study improve the success of using TMDs to mitigate the effect of critical earthquake on irregular building for both cases of study as fixed base and raft foundation (SSI) with different TMDs parameters and configurations. Torsion occurs when the L-shape in plan building subjected to earthquake which may be caused harmful damage. TMDs parameters which give the most effective efficiency in the earthquake duration must be defined, that will mitigate these effects. The parameters of TMDs were studied with structure for different rectangularity ratios and soil types, with different TMD configurations. Nonlinear time history analysis is carried out by SAP2000 with El Centro earthquake wave. The numerical results of the parametric study help in understanding the seismic behavior of L-shape in plan building with TMDs mitigation system.

On the particularities of the forced vibration of the hydro-elastic system consisting of a moving elastic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Panakhli, Panakh G.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.287-316
    • /
    • 2017
  • This paper studies the particularities of the forced vibration of the hydro-elastic system consisting of a moving elastic plate, compressible viscous fluid and rigid wall. This study is made by employing the discrete-analytical solution method proposed in the paper by the authors (Akbarov and Panakhli (2015)). It is assumed that in the initial state the fluid flow is caused by the axial movement of the plate and the additional lineally-located time-harmonic forces act on the plate and these forces cause additional flow field in the fluid and a stress-strain state in the plate. The stress-strain state in the plate is described by utilizing the exact equations and relations of the linear elastodynamics. However, the additional fluid flow field is described with linearized Navier-Stokes equations for a compressible viscous fluid. Numerical results related to the influence of the problem parameters on the frequency response of the normal stress acting on the plate fluid interface plane and fluid flow velocity on this plane are presented and discussed. In this discussion, attention is focused on the influence of the initial plate axial moving velocity on these responses. At the same, it is established that as a result of the plate moving a resonance type of phenomenon can take place under forced vibration of the system. Moreover, numerical results regarding the influence of the fluid compressibility on these responses are also presented and discussed.