• Title/Summary/Keyword: coupled problem

Search Result 780, Processing Time 0.025 seconds

Development of Link Cost Function using Neural Network Concept in Sensor Network

  • Lim, Yu-Jin;Kang, Sang-Gil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.141-156
    • /
    • 2011
  • In this paper we develop a link cost function for data delivery in sensor network. Usually most conventional methods determine the optimal coefficients in the cost function without considering the surrounding environment of the node such as the wireless propagation environment or the topological environment. Due to this reason, there are limitations to improve the quality of data delivery such as data delivery ratio and delay of data delivery. To solve this problem, we derive a new cost function using the concept of Partially Connected Neural Network (PCNN) which is modeled according to the input types whether inputs are correlated or uncorrelated. The correlated inputs are connected to the hidden layer of the PCNN in a coupled fashion but the uncoupled inputs are in an uncoupled fashion. We also propose the training technique for finding an optimal weight vector in the link cost function. The link cost function is trained to the direction that the packet transmission success ratio of each node maximizes. In the experimental section, we show that our method outperforms other conventional methods in terms of the quality of data delivery and the energy efficiency.

Analysis of Fluid-Structure Interactions Considering Nonlinear Free Surface Condition for Base-isolated Fluid Storage Tank (면진된 유체저장탱크의 비선형 유체-구조물 상호작용 해석)

  • Kim, Moon-Kyum;Lim, Yun-Mook;Cho, Kyung-Hwan;Jung, Sung-Won;Eo, Jun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.481-488
    • /
    • 2003
  • A fluid-structure-isolator interaction program was developed in this study. The behavior of liquid regions are simulated by the boundary element method, and then the technique of analyzing the free surface motion in time domain is developed by using the nonlinear free surface boundary condition(NFBC) and the condition of interface between the structure and the fluid. Structure regions are modeled by the finite element method. In order to construct the governing equation of the fluid structure interaction(FSI)problem in time domain, the finite elements for a structure and boundary elements for liquid are coupled using the equilibrium condition, the compatibility condition and NFBC. The isolator is simulated by equation proposedin 3D Basis Me. In order to verify the validity and the applicability of the developed fluid- structure -Isolator interaction program, The horizontal forced vibration analysis was performed. The applicability of the developed method is verified through the artificial seismic analysis of real size liquid storage tank.

  • PDF

Vibration Analysis of Bladed Disk using Non-contact Blade Vibration System

  • Joung, Kyu-Kang;Han, Chak-Heui;Kang, Suk-Chul;Kim, Yeong-Ryeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.871-876
    • /
    • 2008
  • The blade vibration problem of bladed disk is the most critical subject to consider since it directly affects the stable performance of the engine as well as life of the engine. Especially, due to complicated vibration pattern of the bladed disk, more effort was required for vibration analysis and test. The research of measuring the vibration of the bladed disk, using NSMS(Non-intrusive stress measurement) instead of Aeromechanics testing method requiring slip ring or telemetry system with strain gauge, was successful. These testing can report the actual stresses seen on the blades; detect synchronous resonances that are the source of high cycle fatigue(HCF) in blades; measure individual blade mis-tuning and coupled resonances in bladed disks. In order to minimize the error being created due to heat expansion, the tip timing sensor is installed parallel to the blade trailing edge, yielding optimal result. Also, when working on finite element analysis, the whole bladed disk has gone through three-dimensional analysis, evaluating the family mode. The result of the analysis matched well with the test result.

  • PDF

A Many-objective Particle Swarm Optimization Algorithm Based on Multiple Criteria for Hybrid Recommendation System

  • Hu, Zhaomin;Lan, Yang;Zhang, Zhixia;Cai, Xingjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.442-460
    • /
    • 2021
  • Nowadays, recommendation systems (RSs) are applied to all aspects of online life. In order to overcome the problem that individuals who do not meet the constraints need to be regenerated when the many-objective evolutionary algorithm (MaOEA) solves the hybrid recommendation model, this paper proposes a many-objective particle swarm optimization algorithm based on multiple criteria (MaPSO-MC). A generation-based fitness evaluation strategy with diversity enhancement (GBFE-DE) and ISDE+ are coupled to comprehensively evaluate individual performance. At the same time, according to the characteristics of the model, the regional optimization has an impact on the individual update, and a many-objective evolutionary strategy based on bacterial foraging (MaBF) is used to improve the algorithm search speed. Experimental results prove that this algorithm has excellent convergence and diversity, and can produce accurate, diverse, novel and high coverage recommendations when solving recommendation models.

Improving methods for normalizing biomedical text entities with concepts from an ontology with (almost) no training data at BLAH5 the CONTES

  • Ferre, Arnaud;Ba, Mouhamadou;Bossy, Robert
    • Genomics & Informatics
    • /
    • v.17 no.2
    • /
    • pp.20.1-20.5
    • /
    • 2019
  • Entity normalization, or entity linking in the general domain, is an information extraction task that aims to annotate/bind multiple words/expressions in raw text with semantic references, such as concepts of an ontology. An ontology consists minimally of a formally organized vocabulary or hierarchy of terms, which captures knowledge of a domain. Presently, machine-learning methods, often coupled with distributional representations, achieve good performance. However, these require large training datasets, which are not always available, especially for tasks in specialized domains. CONTES (CONcept-TErm System) is a supervised method that addresses entity normalization with ontology concepts using small training datasets. CONTES has some limitations, such as it does not scale well with very large ontologies, it tends to overgeneralize predictions, and it lacks valid representations for the out-of-vocabulary words. Here, we propose to assess different methods to reduce the dimensionality in the representation of the ontology. We also propose to calibrate parameters in order to make the predictions more accurate, and to address the problem of out-of-vocabulary words, with a specific method.

Reflection and propagation of plane waves at free surfaces of a rotating micropolar fibre-reinforced medium with voids

  • Anya, Augustine Igwebuike;Khan, Aftab
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.605-614
    • /
    • 2019
  • The present paper seeks to investigate propagation and reflection of waves at free surfaces of homogeneous, anisotropic and rotating micropolar fibre-reinforced medium with voids. It has been observed that, in particular when P-wave is incident on the free surface, there exist four coupled reflected plane waves traveling in the medium; quasi-longitudinal displacement (qLD) wave, quasi-transverse displacement (qTD) wave, quasi-transverse microrotational wave and a wave due to voids. Normal mode Analysis usually called harmonic solution method is adopted in concomitant with Snell's laws and appropriate boundary conditions in determination of solution to the micropolar fibre reinforced modelled problem. Amplitude ratios which correspond to reflected waves in vertical and horizontal components are presented analytically. Also, the Reflection Coefficients are presented using numerical simulated results in graphical form for a particular chosen material by the help of Mathematica software. We observed that the micropolar fibre-reinforced, voids and rotational parameters have various degrees of effects to the modulation, propagation and reflection of waves in the medium. The study would have impact to micropolar fibre-reinforecd rotational-acoustic machination fields and future works about behavior of seismic waves.

Forced vibration of the hydro-elastic system consisting of the orthotropic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Huseynova, Tarana V.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.199-218
    • /
    • 2019
  • This paper studies the forced vibration of the hydro-elastic system consisting of the anisotropic (orthotropic) plate, compressible viscous fluid and rigid wall within the scope of the exact equations and relations of elastodynamics for anisotropic bodies for describing of the plate motion, and with utilizing the linearized exact Navier-Stokes equations for describing of the fluid flow. For solution of the corresponding boundary value problem it is employed time-harmonic presentation of the sought values with respect to time and the Fourier transform with respect to the space coordinate on the coordinate axis directed along the plate length. Numerical results on the pressure acting on the interface plane between the plate and fluid are presented and discussed. The main aim in this discussion is focused on the study of the influence of the plate material anisotropy on the frequency response of the mentioned pressure. In particular, it is established that under fixed values of the shear modulus of the plate material a decrease in the values of the modulus of elasticity of the plate material in the direction of plate length causes to increase of the absolute values of the interface pressure. The numerical results are presented not only for the viscous fluid case but also for the inviscid fluid case.

Motion Reduction of Rectangular Pontoon Using Sloshing Liquid Damper (슬로싱 액체 댐퍼를 이용한 사각형 폰툰의 운동 저감)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.106-115
    • /
    • 2019
  • The interaction between a sloshing liquid damper (SLD) tank and a rectangular pontoon was investigated under the assumption of the linear potential theory. The eigenfunction expansion method was used not only for the sloshing problem in the SLD tank but also for analyzing the motion responses of a rectangular pontoon in waves. If the frictional damping due to the viscosity of the SLD tank was ignored, the effect of the SLD appeared to be an added mass in the coupled equation of motion. The installation of the SLD tank had a greater effect on the roll motion response than the sway and heave motion of the pontoon. One resonance peak for rolling motion showed up in the case of a frozen liquid in the SLD tank. However, if liquid motion in the SLD tank was allowed, two peaks appeared around the first natural frequency of the fluid in the SLD tank. In particular, the peak value located in the low-frequency region had a relatively large value, and the peak frequency located in the high-frequency region moved into the high-frequency region as the depth of the liquid in the tank increased.

The Study of Biofouling Control and Cause Material in Hybrid Process of Pure Oxygen and Submerged Membrane Bio-reactor (순산소 고율포기시스템 및 침지식 MBR융합공정에서 Biofouling 제어 및 원인물질 규명에 관한 연구)

  • Lee, Sang-Min;Kim, Mi-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.44-53
    • /
    • 2011
  • Membrane bio-reactor (MBR) has several advantages over the conventional activated sludge process, including a high biomass, low sludge production, and better permeate quality. Therefore, the MBR have gained popularity for municipal and industrial wastewater treatment. However the MBR usually were used for sewage and low streng th wastewater treatment because of membrane fouling problem and limitation of oxygen transfer into biomass. In this study, the hybrid process combining MBR and pure oxygen was tested for high strength organic wastewater treatment in the COD loading range from 2 to $10kgCOD/m^3{\cdot}day$. The hybrid process, membrane coupled pure oxygen high compact reactor (MPHCR), had been operated for one year and operation parameters, the effect of COD loading, MLSS concentration and the location of membrane module were studied for membrane fouling characteristic. Also membrane resistance test and the component of foulant was analyzed to investigate what is specific foulant in the MBR.

Channel Electrode Voltammetric and In Situ Electrochemical ESR Studies of Comproportionation of Methyl Viologen in Acetonitrile

  • Lee, Ji U;John C. Eklund;Robert A. W. Dryfe;Richard G. Compton
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.162-167
    • /
    • 1996
  • Two redox processes of methyl viologen (+2/+, +/0) in acetonitrile were investigated by using channel electrode voltammetric and in situ electrochemical ESR methods. Two separated unequal plateau currents of the first (+2/+) and second (+/0) redox processes of the viologen were observed in the channel electrode voltammograms and showed a cube-root depedndence on the electrolyte flow rate, respectively. The simple Levich analysis resulted in two different diffusion coefficients of $D_{+2}=2.2{\times}10^{-5}\;cm^2/s$ and $D_+=3.0{\times}10^{-5}cm^2/s$ from the limiting currents. In situ electrochemical ESR studies were performed for the monocation radicals generated at the potentials of the two plateau currents in the electrolyte flow range $1.3{\times}10^{-1}{\geq}v_f{\geq}2.7{\times}10^{-3}\;cm^3/s$. Backward implicitfinite difference method was employed to simulate the electrochemical kinetic problem of two sequential electron transfers ($MV^{+2}+e{\leftrightarrows}MV^+,\;MV^{+}+e{\leftrightarrows}MV^0$) coupled with reversible comproportionation ($MV^{2+}+MV^0{{\leftrightarrows}^{k_f}_{k_b}}2MV^+$). $k_f$ was found to be greater than ($10^6M^{-1}s^{-1}.