• Title/Summary/Keyword: coupled modeling system

Search Result 241, Processing Time 0.022 seconds

Dynamic stability and structural improvement of vibrating electrically curved composite screen subjected to spherical impactor: Finite element and analytical methods

  • Xiao, Caiyuan;Zhang, Guiju
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.533-552
    • /
    • 2022
  • The current article deals with the dynamic stability, and structural improvement of vibrating electrically curved screen on the viscoelastic substrate. By considering optimum value for radius curvature of the electrically curved screen, the structure improvement of the system occurs. For modeling the electrically system, the Maxwell's' equation is developed. Hertz contact model in employed to obtain contact forces between impactor and structure. Moreover, variational methods and nonlinear von Kármán model are used to derive boundary conditions (BCs) and nonlinear governing equations of the vibrating electrically curved screen. Galerkin and Multiple scales solution approach are coupled to solve the nonlinear set of governing equations of the vibrating electrically curved screen. Along with the analytical solution, 3D finite element simulation via ABAQUS package is provided with the aid of a FE package for simulating the current system's response. The results are categorized in 3 different sections. First, effects of geometrical and material parameters on the vibrational performance and stability of the curves panel. Second, physical properties of the impactor are taken in to account and their effect on the absorbed energy and velocity profile of the impactor are presented. Finally, effect of the radius and initial velocity on the mode shapes of the current structure is demonstrated.

Modeling and Dynamic Analysis of Electro-mechanical System in Machine Tools(2$^{nd}$ Report) - Modeling and Dynamic Analysis of Feed Drive System - (공작기계 시스템의 모델링과 동적특성 분석 (제2보) - 이송계의 모델링과 동적특성 분석 -)

  • Park, Yong-Hwan;Shin, Heung-Chul;Moon, Hee-Sung;Choe, Song-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.218-224
    • /
    • 1999
  • In the feed drive systems of machine tools that consist of many mechanical components such as motor, coupling, ballscrew, nut or table, a torsional vibration is often generated because of its elastic elements in torque transmission. Generally, the accuracy of motion control system is strongly influenced by the dynamic behavior of coupled transmission components. Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So, it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed system. In this paper, the mathematical model of a feed drive system was developed and its mechanical characteristics were analyzed on the basis of the proposed model. The design concepts of speed control loop to stabilize a feed drive system were also proposed.

  • PDF

Two Way Set Temperature Control Impact Study on Ground Coupled Heat Pump System Energy Saving (양방향 설정온도 제어에 따른 지중연계 히트펌프 시스템의 에너지 절감량 평가 연구)

  • Kang, Eun-Chul;Lee, Euy-Joon;Min, Kyong-Chon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2014
  • Government has recently restricted heating and cooling set temperatures for the commercial and public buildings due to increasing national energy consumption. The goal of this paper is to visualize a future two way indoor set temperature control impact on building energy consumption by using TRNSYS simulation modeling. The building was modelled based on the twin test cell with the same dimension. Air source ground coupled heat pump performance data has been used for modeling by TRNSYS 17. Daejeon weather data has been used from Korea Solar Energy Society. The heating set temperature in the reference room is $24^{\circ}C$ as well as the target room set temperature are $23^{\circ}C$, $22^{\circ}C$, $21^{\circ}C$ and $20^{\circ}C$. The cooling set temperature of the reference room is also $24^{\circ}C$ as well as the target room set temperature of $25^{\circ}C$, $26^{\circ}C$, $27^{\circ}C$ and $28^{\circ}C$. For the air source heat pump system, heating season energy consumption is $35.52kWh/m^2y$ in the reference room. But the heating energy consumption in the target room is reduced to 7.5% whenever the set temperature decreased every $1^{\circ}C$. The cooling energy consumption in the reference room is $4.57kWh/m^2y$. On the other hand, the energy consumption in the target room is reduced to 22% whenever the set temperature increased every $1^{\circ}C$ by two way controller. For the geothermal heat pump system, heating energy consumption in the reference room is reduced to 20.7%. The target room heating energy consumption is reduced to 32.6% when the set temperature is $22^{\circ}C$. The energy consumption in the target room is reduced to 59.5% when the set temperature is $26^{\circ}C$.

Analysis of the Contactless Power Transfer System Using Modeling and Analysis of the Contactless Transformer

  • Ryu Myung-Hyo;Kim Jong-Hyun;Baek Ju-Won;Cha Hon-Nyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.351-358
    • /
    • 2006
  • In this paper, the electrical characteristics of the contactless transformer is presented using the conventional coupled inductor theory. Compared with the conventional transformer, the contactless transformer has a large airgap, long primary wire and multi-secondary wire. As such, the contactless transformer has a large leakage inductance, small magnetizing inductance and poor coupling coefficient. Therefore, large magnetizing currents flow through the entire primary system due to small magnetizing inductance, resulting in low overall system efficiency. In high power applications, the contactless transformer is so bulky and heavy that it needs to be split by some light and small transformers. So, the contactless transformer needs several small transformer modules that are connected in series or parallel to transfer the primary power to the secondary one. This paper shows the analysis and measurement results of each contactless transformer module and comparison results between the series- and parallel-connection of the contactless transformer. The results are verified on the simulation based on the theoretical analysis and the 30kW experimental prototype.

A modularized numerical framework for the process-based total system performance assessment of geological disposal systems

  • Kim, Jung-Woo;Jang, Hong;Lee, Dong Hyuk;Cho, Hyun Ho;Lee, Jaewon;Kim, Minjeong;Ju, Heejae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2828-2839
    • /
    • 2022
  • This study developed a safety assessment tool for geological disposal systems called APro, a systemically integrated modeling system based on modularizing and coupling the processes which need to be considered in a geological disposal system. Thermal, hydraulic, chemical, canister failure, radionuclide release and transport processes were considered in the current version of APro. Each of the unit processes in APro consists of a single Default Module, and several Alternative Modules which can increase the flexibility of the model. As an initial stage of developing the modularization concept and modeling interface, the Default Modules of each unit process were described, with one Alternative Module of chemical process. The computation part of APro is mainly a MATLAB workspace controlling COMSOL and PHREEQC, which are coupled by an operator splitting scheme. The APro model domain is a stylized geological disposal system employing the Swedish disposal concept (KBS-3 type), but the repository layout can be freely adjusted. In order to show the applicability of APro to the total system performance assessment of geological disposal system, some sample simulations were conducted. From the results, it was confirmed that coupling of the thermal and hydraulic processes and coupling of the canister failure and the radionuclide release processes were well reflected in APro. In addition, the technical connectivity between COMSOL and PHREEQC was also confirmed.

Economic Design of Tree Network Using Tabu List Coupled Genetic Algorithms (타부 리스트가 결합된 유전자 알고리즘을 이용한 트리형 네트워크의 경제적 설계)

  • Lee, Seong-Hwan;Lee, Han-Jin;Yum, Chang-Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • This paper considers an economic design problem of a tree-based network which is a kind of computer network. This problem can be modeling to be an objective function to minimize installation costs, on the constraints of spanning tree and maximum traffic capacity of sub tree. This problem is known to be NP-hard. To efficiently solve the problem, a tabu list coupled genetic algorithm approach is proposed. Two illustrative examples are used to explain and test the proposed approach. Experimental results show evidence that the proposed approach performs more efficiently for finding a good solution or near optimal solution in comparison with a genetic algorithm approach.

An approach to the coupled dynamics of small lead cooled fast reactors

  • Zarei, M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1272-1278
    • /
    • 2019
  • A lumped kinetic modeling platform is developed to investigate the coupled nuclear/thermo-fluid features of the closed natural circulation loop in a low power lead cooled fast reactor. This coolant material serves a reliable choice with noticeable thermo-physical safety characteristics in terms of natural convection. Boussienesq approximation is resorted to appropriately reduce the governing partial differential equations (PDEs) for the fluid flow into a set of ordinary differential equations (ODEs). As a main contributing step, the coolant circulation speed is accordingly correlated to the loop operational power and temperature levels. Further temporal analysis and control synthesis activities may thus be carried out within a more consistent state space framework. Nyquist stability criterion is thereafter employed to carry out a sensitivity analysis for the system stability at various power and heat sink temperature levels and results confirm a widely stable natural circulation loop.

Zero-Dimensional Modeling of Plasma Generator in Electrothermal Gun (전열포 플라즈마 생성장치의 영차원 해석모델)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.1-9
    • /
    • 2015
  • This paper introduces a zero-dimensional modeling on the plasma generation in electrothermal gun operation. The plasma generator consists of alumina bore and aluminum electrodes which is electrically powered by outer pulse forming network and, traditionally, its numerical simulations have employed time-dependent one-dimensional governing equations. However, by assuming isothermal approximation along the bore and choked bore exit condition, present analysis simplifies the mass and energy equations into zero-dimensional approximation of plasma conditions coupled with mass ablation model and plasma property evaluation. The numerical results show good agreement with the corresponding one-dimensional computations and thus verify the present modeling approach.

Vibration Analysis of Rotary Compressors Considering the Coupled Effect of Motor (전동기의 연성을 고려한 로터리 압축기의 진동 해석)

  • 정의봉;황선웅;안세진;김정훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1055-1060
    • /
    • 2002
  • The noise and vibration of rolling piston-type compressors used in the most of the airconditional system is a serious and important problem occurred during turning on and off as well as during operating. To analyze the vibration occurred during turning on and oft, the vibration analysis of motor-compressor coupling is required. In this paper, through modeling of the motor, solving the force from the equations of motion of the moving parts and considering the stiffness of the rubber mounts, the analysis of vibration was performed.

  • PDF

Numerical modeling of high density inductively coupled plasma with pulse bias at system for 300 mm wafer (300 mm 웨이퍼용 장치에서 펄스 바이어스가 인가된 고밀도 유도결합 플라즈마의 수치 계산)

  • Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.112-112
    • /
    • 2011
  • 300 mm 웨이퍼용 도핑장치에서 2 MHz 유도결합 플라즈마와 8 kHz의 기판 바이폴라 펄스 바이어스에 의한 플라즈마에 대해 수치 계산이 수행되었다. 한 주기에서 0, -500, +100 V의 Pulse duration동안 기판 전체에 100, 500, 150 eV 부근의 이온 입사 에너지 분포를 보였으며, 이에 따라 기판 가장자리에서의 이온 입사 각도는 -30~+$30^{\circ}$ 사이에서 변화함으로서 도핑 불균일에 대한 원인을 확인하였다.

  • PDF