• Title/Summary/Keyword: coupled modeling system

Search Result 241, Processing Time 0.024 seconds

A Systems Engineering Approach to Predict the Success Window of FLEX Strategy under Extended SBO Using Artificial Intelligence

  • Alketbi, Salama Obaid;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.97-109
    • /
    • 2020
  • On March 11, 2011, an earthquake followed by a tsunami caused an extended station blackout (SBO) at the Fukushima Dai-ichi NPP Units. The accident was initiated by a total loss of both onsite and offsite electrical power resulting in the loss of the ultimate heat sink for several days, and a consequent core melt in some units where proper mitigation strategies could not be implemented in a timely fashion. To enhance the plant's coping capability, the Diverse and Flexible Strategies (FLEX) were proposed to append the Emergency Operation Procedures (EOPs) by relying on portable equipment as an additional line of defense. To assess the success window of FLEX strategies, all sources of uncertainties need to be considered, using a physics-based model or system code. This necessitates conducting a large number of simulations to reflect all potential variations in initial, boundary, and design conditions as well as thermophysical properties, empirical models, and scenario uncertainties. Alternatively, data-driven models may provide a fast tool to predict the success window of FLEX strategies given the underlying uncertainties. This paper explores the applicability of Artificial Intelligence (AI) to identify the success window of FLEX strategy for extended SBO. The developed model can be trained and validated using data produced by the lumped parameter thermal-hydraulic code, MARS-KS, as best estimate system code loosely coupled with Dakota for uncertainty quantification. A Systems Engineering (SE) approach is used to plan and manage the process of using AI to predict the success window of FLEX strategies under extended SBO conditions.

Development of Flexure Applied Bond head for Die to Wafer Hybrid Bonding (Die to Wafer Hybrid Bonding을 위한 Flexure 적용 Bond head 개발)

  • Jang, Woo Je;Jeong, Yong Jin;Lee, Hakjun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.171-176
    • /
    • 2021
  • Die-to-wafer (D2W) hybrid bonding in the multilayer semiconductor manufacturing process is one of wafer direct bonding, and various studies are being conducted around the world. A noteworthy point in the current die-to-wafer process is that a lot of voids occur on the bonding surface of the die during bonding. In this study, as a suggested method for removing voids generated during the D2W hybrid bonding process, a flexible mechanism for implementing convex for die bonding to be applied to the bond head is proposed. In addition, modeling of flexible mechanisms, analysis/design/control/evaluation of static/dynamics properties are performed. The proposed system was controlled by capacitive sensor (lion precision, CPL 290), piezo actuator (P-888,91), and dSpace. This flexure mechanism implemented a working range of 200 ㎛, resolution(3σ) of 7.276nm, Inposition(3σ) of 3.503nm, settling time(2%) of 500.133ms by applying a reverse bridge type mechanism and leaf spring guide, and at the same time realized a maximum step difference of 6 ㎛ between die edge and center. The results of this study are applied to the D2W hybrid bonding process and are expected to bring about an effect of increasing semiconductor yield through void removal. In addition, it is expected that it can be utilized as a system that meets the convex variable amount required for each device by adjusting the elongation amount of the piezo actuator coupled to the flexible mechanism in a precise unit.

Numerical Modeling of Water Transfer among Precipitation, Surface Water, Soil Moisture and Groundwater

  • Chen, Xi;Zhang, Zhicai;Chen, Yongqin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.2-11
    • /
    • 2006
  • In the processes of hydrological cycle, when precipitation reaches the ground surface, water may become surface runoff or infiltrate into soil and then possibly further percolate into groundwater aquifer. A part of the water is returned to the atmosphere through evaporation and transpiration. Soil moisture dynamics driven climate fluctuations plays a key role in the simulation of water transfer among ground surface, unsaturated zone and aquifer. In this study, a one-layer canopy and a four-layer soil representation is used for a coupled soil-vegetation modeling scheme. A non-zero hydraulic diffusivity between the deepest soil layer modeled and groundwater table is used to couple the numerical equations of soil moisture and groundwater dynamics. Simulation of runoff generation is based on the mechanism of both infiltration excess overland flow and saturation overland flow nested in a numerical model of soil moisture dynamics. Thus, a comprehensive hydrological model integrating canopy, soil zone and aquifer has been developed to evaluate water resources in the plain region of Huaihe River basin in East China and simulate water transfer among precipitation, surface water, soil moisture and groundwater. The newly developed model is capable of calculating hydrological components of surface runoff, evapotranpiration from soil and aquifer, and groundwater recharge from precipitation and discharge into rivers. Regional parameterization is made by using two approaches. One is to determine most parameters representing specific physical values on the basis of characterization of soil properties in unsaturated zone and aquifer, and vegetations. The other is to calibrate the remaining few parameters on the basis of comparison between measured and simulated streamflow and groundwater tables. The integrated modeling system was successfully used in the Linhuanji catchment of Huaihe plain region. Study results demonstrate that (1) on the average 14.2% of precipitation becomes surface runoff and baseflow during a ten-year period from 1986 to 1995 and this figure fluctuates between only 3.0% in drought years of 1986, 1988, 1993 and 1994 to 24.0% in wet year of 1991; (2) groundwater directly deriving from precipitation recharge is about 15.0% t of the precipitation amount, and (3) about half of the groundwater recharge flows into rivers and loses through evaporation.

  • PDF

Thermal-hydro-mechanical Modelling for an Äspö prototype repository: analysis of thermal behavior (Äspö 원형 처분장에 대한 열-수리-역학적 모델링 연구: 열적 거동 해석)

  • Lee, Jae Owan;Birch, Kenneth;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.372-382
    • /
    • 2013
  • Thermal-hydro-mechanical (THM) modeling is a critical R&D issue in the performance and safety assessment of a high-level waste repository. With an $\ddot{A}$sp$\ddot{o}$ prototype repository, its thermal behavior was analyzed and then compared with in-situ experimental data for its validation. A model simulation was used to calculate the temperature distributions in the deposition holes, deposition tunnel, and surrounding host rock. A comparison of the simulation results with the experimental data was made for deposition hole DH-6, which showed that there was a temperature difference of $2{\sim}5^{\circ}C$ depending on the location of the measuring points, but there was a similar trend in the evolution curves of temperature as a function of time. It was expected that the coupled modeling of the thermal behavior with the hydro-mechanical behavior in the buffer and backfill of the $\ddot{A}$sp$\ddot{o}$ prototype repository would give a better agreement between the experimental and model calculation results.

Simulations of Summertime Surface Ozone Over the Korean Peninsula Under IPCC SRES A2 and B1 Scenarios (IPCC SRES A2와 B1 시나리오에 따른 한반도지역의 여름철 지표 오존의 수치모의)

  • Hong, Sung-Chul;Choi, Jin-Young;Song, Chang-Keun;Hong, You-Deog;Lee, Suk-Jo;Lee, Jae-Bum
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.3
    • /
    • pp.251-263
    • /
    • 2013
  • The surface ozone concentrations changes were investigated in response to climate change over the Korean peninsula for summertime using the global-regional one way coupled Integrated Climate and Air quality Modeling System (ICAMS). The future simulations were conducted under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 and B1 scenarios. The modeling system was applied for four 10-year simulations: 1996~2005 as a present-day case, 2016~2025, 2046~2055, and 2091~2100 as future cases. The results in this study showed that the mean surface ozone concentrations increased up to 0.5~3.3 ppb under the A2, but decreased by 0.1~10.9 ppb under the B1 for the future, respectively. However, its increases were lower than an increase of the average daily maximum 8-hour (DM8H) surface ozone concentrations which was projected to increase by 2.8~6.5 ppb under the A2. The DM8H surface ozone concentrations seem to be therefore far more affected by the climate and emissions changes than mean values. The probability of exceeding 60 ppb was projected to increase by 6~19% under the A2. In the case of B1, its changes were presented with an increase of 2.9% in the 2020s but no occurrence in the 2100s due to the effect of the reduced emissions. Future projection on surface ozone concentrations was generally shown to have almost the similar trend as the emissions of $NO_x$ and NMVOC.

A Study on Analysis Technique for Chloride Penetration in Cracked Concrete under Combined Deterioration (복합열화에 노출된 균열부 콘크리트 내의 염화물 침투 해석 기법에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.359-366
    • /
    • 2007
  • Recently, analysis researches on durability are focused on chloride attack and carbonation due to increased social and engineering significance. Generally, chloride penetration and carbonation occur simultaneously except for in submerged condition and chloride behavior in carbonated concrete is evaluated to be different from that in normal concrete. Furthermore, if unavoidable crack occurs in concrete, it influences not only single attack but also coupled deterioration more severely. This is a study on analysis technique with system dynamics for chloride penetration in concrete structures exposed to coupled chloride attack and carbonation through chloride diffusion, permeation, and carbonation reaction. For the purpose, a modeling for chloride behavior considering diffusion and permeation is performed through previous models for early-aged concrete such as MCHHM (multi component hydration heat model) and MPSFM (micro pore structure formation). Then model for combined deterioration is developed considering changed characteristics such as pore distribution, saturation and dissociation of bound chloride content under carbonation. The developed model is verified through comparison with previous experimental data. Additionally, simulation for combined deterioration in cracked concrete is carried out through utilizing previously developed models for chloride penetration and carbonation in cracked concrete. From the simulated results, CCTZ (chloride-carbonation transition zone) for evaluating combined deterioration is proposed. It is numerically verified that concrete with slag has better resistance to combined deterioration than concrete with OPC in sound and cracked concrete.

The change of East Asian Monsoon to $CO_2$ increase

  • Kripalani, R.H.;Oh, J.H.;Chaudhari, H.S.
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.1 s.26
    • /
    • pp.9-27
    • /
    • 2006
  • The East Asian (China, Korea and Japan) summer monsoon precipitation and its variability are examined from the outputs of the 22 coupled climate models performing coordinated experiments leading to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) following the multi-model ensemble (MME) technique. Results are based on averages of all the available models. The shape of the annual cycle with maximum during the summer monsoon period is simulated by the coupled climate models. However, models fail to simulate the minimum peak in July which is associated with northward shifts of the Meiyu-Changma-Baiu precipitation band. The MME precipitation pattern is able to capture the spatial distribution of rainfall associated with the location of the north Pacific subtropical high and the Meiyu-Changma-Baiu frontal zone. However precipitation over the east coast of China, Korea-Japan peninsular and the adjoining oceanic regions is underestimated. Future projections to the radiative forcing of doubled $CO_2$ scenario are examined. The MME reveals an increase in precipitation varying from 5 to 10 %, with an average of 7.8 % over the East Asian region at the time of $CO_2$ doubling. However the increases are statistically significant only over the Korea-Japan peninsula and the adjoining north China region. The increase in precipitation may be attributed to the projected intensification of the subtropical high, and thus the associated influx of moist air from the Pacific to inland. The projected changes in the amount of precipitation are directly proportional to the changes in the strength of the subtropical high. Further a possible increase in the length of the summer monsoon precipitation period from late spring through early autumn is suggested.

  • PDF

Future Inundation Risk Evaluation of Farmland in the Moohan Stream Watershed Based on CMIP5 and CMIP6 GCMs (CMIP5 및 CMIP6 GCM 기반 무한천 유역 농경지 미래 침수 위험도 분석)

  • Jun, Sang Min;Hwang, Soonho;Kim, Jihye;Kwak, Jihye;Kim, Kyeung;Lee, Hyun Ji;Kim, Seokhyeon;Cho, Jaepil;Lee, Jae Nam;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.131-142
    • /
    • 2020
  • The objective of this study was to evaluate future inundation risk of farmland according to the application of coupled model intercomparison project phase 5 (CMIP5) and coupled model intercomparison project phase 6 (CMIP6). In this study, future weather data based on CMIP5 and CMIP6 general circulation model (GCM) were collected, and inundation was simulated using the river modeling system for small agricultural watershed (RMS) and GATE2018 in the Tanjung district of the Moohan stream watershed. Although the average probable rainfall of CMIP5 and CMIP6 did not show significant differences as a result of calculating the probability rainfall, the difference between the minimum and maximum values was significantly larger in CMIP6. The results of the flood discharge calculation and the inundation risk assessment showed similar to trends to those of probability rainfall calculations. The risk of inundation in the future period was found to increase in all sub-watersheds, and the risk of inundation has been analyzed to increase significantly, especially if CMIP6 data are used. Therefore, it is necessary to consider climate change effects by utilizing CMIP6-based future weather data when designing and reinforcing water structures in agricultural areas in the future. The results of this study are expected to be used as basic data for utilizing CMIP6-based future weather data.

Coupling Simulation with Multi-dimensional Models for River Flow (다차원 모형을 이용한 하천흐름 연계모의)

  • Ahn, Jung Min;Hur, Young Teck;Lyu, Siwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.137-147
    • /
    • 2013
  • It is essential to understand the hydraulic characteristics of rivers for increasing flood-control capacity and operating hydraulic structures efficiently. Multi-dimensional models can be the proper measures to obtain the detailed information on the hydraulic characteristics of rivers. But huge amount of data and time-consuming work have been the obstacle for applying multi-dimensional models. In this study, simulation technique with multi-dimensional model(EFDC), coupled with COSFIM and FLDWAV, has been developed and applied to the real river system for verification. Developed technique can offers spatial and grid unit information as well as line and section unit information from 1-D modeling. It is considered that the coupling simulation technique can provide useful hydraulic information for river management and treatment.

Effect of soil pile structure interaction on dynamic characteristics of jacket type offshore platforms

  • Asgarian, Behrouz;Shokrgozar, Hamed Rahman;Shahcheraghi, Davoud;Ghasemzadeh, Hasan
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.381-395
    • /
    • 2012
  • Dynamic response of Pile Supported Structures is highly depended on Soil Pile Structure Interaction. In this paper, by comparison of experimental and numerical dynamic responses of a prototype jacket offshore platform for both hinge based and pile supported boundary conditions, effect of soil-pile-structure interaction on dynamic characteristics of this platform is studied. Jacket and deck of a prototype platform is installed on a hinge-based case first and then platform is installed on eight skirt piles embedded on continuum monolayer sand. Dynamic characteristics of platform in term of natural frequencies, mode shapes and modal damping are compared for both cases. Effects of adding and removing vertical bracing members in top bay of jacket on dynamic characteristics of platform for both boundary conditions are also studied. Numerical simulation of responses for the studied platform is also performed for both mentioned cases using capability of ABAQUS and SACS software. The 3D model using ABAQUS software is created using solid elements for soil and beam elements for jacket, deck and pile members. Mohr-Coulomb failure criterion and pile-soil interface element are used for considering nonlinear pile soil structure interaction. Simplified modeling of soil-pile-structure interaction effect is also studied using SACS software. It is observed that dynamic characteristics of the system changes significantly due to soil-pile-structure interaction. Meanwhile, both of complex and simplified (ABAQUS and SACS, respectively) models can predict this effect accurately for such platforms subjected to dynamic loading in small range of deformation.