• Title/Summary/Keyword: couple stress

Search Result 192, Processing Time 0.032 seconds

Influence of various sources in micropolar thermoelastic medium with voids

  • Kumar, Rajneesh;Ailawalia, Praveen
    • Structural Engineering and Mechanics
    • /
    • v.31 no.6
    • /
    • pp.717-735
    • /
    • 2009
  • The present problem is concerned with the study of deformation of micropolar thermoelastic medium with voids under the influence of various sources acting on the plane surface. The analytic expressions of displacement components, force stress, couple stress, change in volume fraction field and temperature distribution are obtained in the transformed domain for Lord-Shulman (L-S) theory of thermoelasticity after applying the integral transforms. A numerical inversion technique has been applied to obtain the solution in the physical domain. The numerical results are presented graphically. Some useful particular cases have also been deduced.

A Study on the Plane Couette Flow Using Micropolar Fluid Theory

  • Kim, Youn-Jea;Kim, Tae-An
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.491-498
    • /
    • 2004
  • An analysis of the plane Couette flow between two parallel plates of a viscous, incompressible, micropolar fluid is presented. Especially, the effects of non-zero values of the micro-gyration boundary condition coefficient and pressure gradient on the flow fields are studied. Numerical results show that the micro polar parameter was found to have much more of an impact on the flow behaviors. It is also observed that the micro-gyration boundary condition coefficient influenced on the coefficients of skin friction and couple stress due to its different effect on the surface stress.

Moving load response on the stresses produced in an irregular microstretch substrate

  • Kaur, Tanupreet;Sharma, Satish Kumar;Singh, Abhishek Kumar;Chaki, Mriganka Shekhar
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.175-191
    • /
    • 2016
  • The present article is aimed at an investigation of stresses produced in a microstretch elastic half-space due to a moving load. The expressions of normal stress, shear stress and tangential couple stress produced in this case have been obtained in closed form. To find the displacement fields the perturbation method is applied. Significant effect of moving load on variation of stresses developed at different depths below the surface due to the depth of substrate and frictional coefficient of the rough surface of the medium has been observed. The effects of different shapes of irregularity and depth of irregularity on normal, shear and tangential couple stresses have been discussed. Some particular cases have also been deduced from the present investigation. Finally, the analytical developments have been illustrated numerically for aluminium-epoxy-like material substrate under the action of moving load.

Dynamic analysis of nanostructure in improving sports equipment assuming sinusoidal shear deformation theory and numerical solution

  • Xinrui Yang;Amir Behshad
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.221-234
    • /
    • 2024
  • In this paper, dynamic response of annular nanoplates in improving sports equipment with surface effect embedded by visco Pasternak fractional foundation is studied. Size effects are evaluated by modified couple stress theory (MCST) and the surface effects are considered by the Gurtin-Murdoch theory. The structural damping effect is considered in this research using Kelvin-Voigt model. Sinusoidal shear deformation theory (SSDT) is applied for mathematical modelling of the nanostructure system. The numerical procedure of differential quadrature (DQ) is presented to determine the dynamic deflection as well as dynamic response of the annular nanoplates. The numerical results dynamic deflection of the nanostructure is considering, including material length scale parameter, spring and damper constants of visco-pasternak fractional foundation, geometrical parameters of annular nanoplates, surface stress effects.

The Mediating Role of Self-esteem between Spousal Support and Infertility-related Stress among Infertile Couples: Actor Effects and Partner Effects (난임 부부의 배우자 지지와 난임 스트레스의 관계에서 자아존중감의 매개효과: 자기효과와 상대방효과를 중심으로)

  • Lee, Ka Yeon;Kim, Seong Hee
    • Human Ecology Research
    • /
    • v.59 no.4
    • /
    • pp.465-475
    • /
    • 2021
  • The purpose of this study was to examine actor and partner effects among infertile couples in determining whether self-esteem affects the degree of infertility-related stress via perceived spousal support. The sample comprised 219 couples who experienced infertility, each of whom completed an online survey. To analyze the data, descriptive statistics, t-test, correlation analysis and APIM (Actor-Partner Interdependence Model) were performed using SPSS 25.0 and Mplus 7.3 program. The main results were as follows. First, the actor effect of spousal support on self-esteem was significant in both husbands and wives. Second, the actor effects of spousal support on infertility-related stress and self-esteem on infertility stress were significant only in husbands. Third, in the association between husbands' and wives' spousal support and infertility-related stress, three mediating pathways via husband's self-esteem were found to be significant. Based on these results, the necessity for a couple-level analysis in infertility research, psycho-emotional interventions for infertile couples, and implications for follow-up studies were discussed.

Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites

  • Fenjan, Raad M.;Faleh, Nadhim M.;Ahmed, Ridha A.
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.147-156
    • /
    • 2020
  • This research is related to nonlinear stability analysis of advanced microbeams reinforced by Graphene Platelets (GPLs) considering generic geometrical imperfections and thermal loading effect. Uniform, linear and nonlinear distributions of GPLs in transverse direction have been considered. Imperfection sensitivity of post-bucking behaviors of the microbeam to different kinds of geometric imperfections have been examined. Geometric imperfection is first considered to be identical as the first buckling mode, then a generic function is employed to consider sine-type, local-type and global-type imperfectness. Modified couple stress theory is adopted to incorporate size-dependent behaviors of the beam at micro scale. The post-buckling problem is solved analytically to derive load-amplitude curves. It is shown that post-buckling behavior of microbeam is dependent on the type geometric imperfection and its magnitude. Also, post-buckling load can be enhanced by adding more GPLs or selecting a suitable distribution for GPLs.

A Similarity Solution of the Characteristics of Micropolar Fluid Flow in the Vicinity of a Wedge (상사해법을 이용한 쐐기형 물체 주위의 미세 극성유체 유동 특성에 관한 연구)

  • Kim, Youn J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.969-977
    • /
    • 1999
  • A similarity solution of a steady laminar flow of micropolar fluids past wedges has been studied. The similarity variables found by Falkner and Skan are employed to reduce the streamwise-dependence in the coupled nonlinear boundary layer equations. Numerical solutions of the equations are then obtained using the fourth-order Runge-Kutta method and the distribution of velocity, micro-rotation, shear and couple stress across the boundary layer are obtained. These results are compared with the corresponding flow problems for Newtonian fluid past wedges with various wedge angles. Numerical results show that, keeping ${\beta}$ constant, the skin friction coefficient is lower for a micropolar fluid, as compared to a Newtonian fluid. For the case of constant material parameter K, however, the velocity distribution for a micropolar fluid is higher than that of a Newtonian fluid.

Dynamic stiffness matrix method for axially moving micro-beam

  • Movahedian, Bashir
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.385-397
    • /
    • 2012
  • In this paper the dynamic stiffness matrix method was used for the free vibration analysis of axially moving micro beam with constant velocity. The extended Hamilton's principle was employed to derive the governing differential equation of the problem using the modified couple stress theory. The dynamic stiffness matrix of the moving micro beam was evaluated using appropriate expressions of the shear force and bending moment according to the Euler-Bernoulli beam theory. The effects of the beam size and axial velocity on the dynamic characteristic of the moving beam were investigated. The natural frequencies and critical velocity of the axially moving micro beam were also computed for two different end conditions.

Influence of microstructure, heterogeneity and internal friction on SH waves propagation in a viscoelastic layer overlying a couple stress substrate

  • Sharma, Vikas;Kumar, Satish
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.703-716
    • /
    • 2016
  • In this paper, we have investigated shear horizontal wave propagation in a layered structure, consisting of granular macromorphic rock (Dionysos Marble) substrate underlying a viscoelastic layer of finite thickness. SH waves characteristics are affected by the material properties of both substrate and the coating. The effects of microstructural parameter "characteristic length" of the substrate, along with heterogeneity, internal friction and thickness of viscoelastic layer are studied on the dispersion curves. Dispersion equation for SH wave is derived. Real and damping phase velocities of SH waves are studied against dimensionless wave number, for different combinations of various parameters involved in the problem.

Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions

  • Arani, Ali Ghorbanpour;Kiani, Farhad
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.149-165
    • /
    • 2018
  • Using the modified couple stress theory and Euler-Bernoulli beam theory, this paper studies nonlinear vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation. Using the Hamilton's principle, the set of the governing equations are derived and solved numerically using differential quadrature method (DQM), Newark beta method and arc-length technique for all kind of the boundary conditions. First convergence and accuracy of the presented solution are demonstrated and then effects of radius of gyration, Poisson's ratio, small scale parameters, temperature changes and coefficients of the foundation on the linear and nonlinear natural frequencies and dynamic response of the microbeam are investigated.