• Title/Summary/Keyword: cosymplectic manifolds

Search Result 44, Processing Time 0.02 seconds

A NOTE ON SPECTRAL CHARACTERIZATIONS OF COSYMPLECTIC FOLIATIONS

  • Park, Jin-Suk;Cho, Kwan-Ho;Sohn, Won-Ho;Lee, Jae-Don
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.917-926
    • /
    • 1994
  • Let ($M, G_M, F$) be a (p+q)-dimensional Riemannian manifold with a foliation F of codimension q and a bundle-like metric $g_M$ with respect to F ([9]). Aside from the Laplacian $\bigtriangleup_g$ associated to the metric g, there is another differnetial operator, the Jacobi operator $J_D$, which is a second order elliptic operator acting on sections of the normal bundle. Its spectrum isdiscrete as a consequence of the compactness of M. The study of the spectrum of $\bigtriangleup_g$ acting on functions or forms has attracted a lot of attention. In this point of view, the present authors [7] have studied the spectrum of the Laplacian and the curvature of a compact orientable cosymplectic manifold. On the other hand, S. Nishikawa, Ph. Tondeur and L. Vanhecke [6] studied the spectral geometry for Riemannian foliations. The purpose of the present paper is to study the relation between two spectra and the transversal geometry of cosymplectic foliations. We shall be in $C^\infty$-category. Manifolds are assumed to be connected.

  • PDF

MINIMAL AND HARMONIC REEB VECTOR FIELDS ON TRANS-SASAKIAN 3-MANIFOLDS

  • Wang, Yaning
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1321-1336
    • /
    • 2018
  • In this paper, we obtain some necessary and sufficient conditions for the Reeb vector field of a trans-Sasakian 3-manifold to be minimal or harmonic. We construct some examples to illustrate main results. As applications of the above results, we obtain some new characteristic conditions under which a compact trans-Sasakian 3-manifold is homothetic to either a Sasakian or cosymplectic 3-manifold.

CONHARMONICALLY FLAT FIBRED RIEMANNIAN SPACE II

  • Lee, Sang-Deok;Kim, Byung-Hak
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.441-447
    • /
    • 2002
  • We show that the conharmonical1y flat K-contact find cosymplectic manifolds are local1y Euclidean. Evidently non locally Euclidean conharmonically flat Sasakian manifold does not exist. Moreover we see that conharmonically flat Kenmotsu manifold does not exist and conharmonically flat fibred quasi quasi Sasakian space is locally Euclidean if and only if the scalar curvature of each fibre vanishes identically.

$zeta$-null geodesic gradient vector fields on a lorentzian para-sasakian manifold

  • Matsumoto, Koji;Mihai, Ion;Rosca, Radu
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.17-31
    • /
    • 1995
  • A Lorentzian para-Sasakian manifold M$(\varphi, \zeta, \eta, g)$ (abr. LPS-manifold) has been defined and studied in [9] and [10]. On the other hand, para-Sasakian (abr. PS)-manifolds are special semi-cosympletic manifolds (in the sense of [2]), that is, they are endowed with an almost cosympletic 2-form $\Omega$ such that $d^{2\eta}\Omega = \psi(d^\omega$ denotes the cohomological operator [6]), where the 3-form $\psi$ is the associated Lefebvre form of $\Omega$ ([8]). If $\eta$ is exact, $\psi$ is a $d^{2\eta}$-exact form, the manifold M is called an exact Ps-manifold. Clearly, any LPS-manifold is endowed with a semi-cosymplectic structure (abr. SC-structure).

  • PDF